Skip to main content
Log in

On Sets of Unbounded Divergence at Each Point of Multiple Fourier Series of a Function Equal Zero on a Closed Set

  • Published:
Analysis Mathematica Aims and scope Submit manuscript

Abstract

The problem investigated is to characterize sets E, the sets of unbounded divergence (at each point) of single and multiple Fourier series under condition of convergence of these series to zero at each point of the complement of E.

For any nonempty open set B ⊂ T N = [0, 2π]N, N ≥ 1, a Lebesgue integrable function f 0 is constructed which equals zero on the set U = T N \ B whose multiple trigonometric Fourier series diverges unboundedly (in the case of summation over squares) at each point of the set

$$\varepsilon (\overline {\mathfrak{B}} ) = \bigcup\limits_{j = 1}^N {({\text{pr}}_{{\text{(}}j{\text{)}}} \{ \overline {\mathfrak{B}} \} \times T^{N - 1} )} ,$$

, where \(\overline {\mathfrak{B}} \) is the closure of the set \({\mathfrak{B}}\), pr(j) \({\{ \overline {\mathfrak{B}} \} }\) is the orthogonal projection of the set \({\overline {\mathfrak{B}} }\) on the axis Ox j , j = 1,...,N. It is also proved that if \(\varepsilon (\overline {\mathfrak{B}} ) \ne T^N \), then for any function f equal zero on the set U the multiple trigonometric Fourier series of the function f (in the case of summation over rectangles) converges at each point of the set T N \ \(\varepsilon (\overline {\mathfrak{B}} )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

_Literatura

  1. N. K. Bari, Trigonometriqeskie r_dy, Fizmatgiz (Moskva, 1961).

  2. I. L. Bloxanski_i, DeO rashodimosti r_da Fur'e poqti vs_du na zadannom mno_estve i shodimosti k nul_ vne ego, Dokl. AN SSSR, 280(1980), 777–780.

    Google Scholar 

  3. I. L. Bloxanski_i, DeO maksimal'nyhm no_estvah shodimosti i neograniqenno_i rashodimosti kratnyh r_dov Fur'e funkci_i iz L1, ravnyhnu l_ na zadannom mno_estve, Dokl. AN SSSR, 283(1985), 1040–1044.

    Google Scholar 

  4. I. L. Bloxanski_i, Dva kriteri_ slabo_i obobwenno_i lokalizacii dl_ kratnyhtr igonometriqeskih r_dov Fur'e funkci_i iz Lp, p ¡Ý 1, Izv. iAN SSSR. Ser. matem., 49(1985), 243–282 — I. L. Bloshanskii, Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in Lp, p ¡Ý 1, Math. USSR Izv., 26(1986).

    Google Scholar 

  5. I. L. Bloshanskii, On the existence of functions from Lp, p ¡Ý 1 whose Fourier series converge to zero on a prescribed set and diverge unboundedly outside it, Analysis Math., 14(1988), 39–155.

    Google Scholar 

  6. I. L. Bloxanski_i, DeStruktura i geometri_ maksimal'nyhm no_estv shodimosti i neograniqenno_i rashodimosti poqti vs_du kratnyh r_dov Fur'e funkci_i iz L1, ravnyhnu l_ na zadannom mno_estve, Izv.AN SSSR. Ser. matem., 53(1989), 675–707 — I. L. Bloshanskii, The structure and geometry of maximal sets ofc onvergence and unbounded divergence almost everywhere ofm ultiple Fourier series off unctions in L1 vanishing at a given set, Math. USSR Izv. 35(1990), 1–35.

    Google Scholar 

  7. I. L. Bloxanski_i, O posledovatel'nosti line_inyhoperat orov, Trudy MIRAN, 201(1992), 43–78 — I. I. Bloshanskii, On a sequence oflin ear operators, Proc. Steklov Inst. Math., 2(1994), 35–63.

    Google Scholar 

  8. V. V. Buzdalin, DeTrigonometriqeskie r_dy Fur'e nepreryvnyhf unkci_i, rashod_wies_ na zadannom mno_estve, Matem. sb., 95(1974), 84–107.

    Google Scholar 

  9. H. Hahn, Uber die Menge der Konvergenzpunkte einer Funktionfolge, Arch. der Math. und Physik, 28(1919), 34–45.

    Google Scholar 

  10. G. H. Hardy and E. M. Write, An introduction to the theory of numbers, University Press (Oxford, 1938).

    Google Scholar 

  11. F. Hausdorf, Teori_ mno_estv, ONTI (Moskva–Leningrad, 1937) — F. Hausdorff, Mengenlehre, Dover (New York, 1944).

  12. F. Herzog and G. Piranian, Sets ofcon vergence ofT aylor series, Duke Math. J., 16(1949), 529–554.

    Google Scholar 

  13. )-P. Kahan, Sluqa$inye funkcional_nye r_dy, Mir (Moskva, 1973) — J.-P. Kahane, Some random series of functions, Heath (Lexington, Mass., 1968).

  14. A. N. Kolmogoroff, DeUne serie de Fourier–Lebesgue divergente partout, Compt.Rend. Acad. Sci., Paris, 183(1926), 1327–1329.

    Google Scholar 

  15. T. W. K¨orner, Sets ofd ivergence for Fourier series, Bull. London Math. Soc., 3(1971), 152–154.

    Google Scholar 

  16. T. W. K¨orner, Everywhere divergent Fourier series, Colloq. Math., 45(1981), 103–118.

    Google Scholar 

  17. S. +. Lukaxenko, DeO strukture mno_estv rashodimosti trigonometriqeskih r_dov i r_dov po sisteme Uolxa, Dokl. AN SSSR, 253(1980)(3), 528–529.

    Google Scholar 

  18. M. A. Lunina, DeO mno_estvah shodimosti i rashodimosti posledovatel'-noste_i de_istvitel'nyhnepr eryvnyh funkci_i na metriqeskom prostranstve, Matem. zametki, 17(1975), 205–217.

    Google Scholar 

  19. A. Rajchman, Sur le principe de localization de Riemann, S. R. Soc. Sci. Varsovie, 11(1918), 115–122.

    Google Scholar 

  20. W. Sierpi´nski, Sur l'ensemble des points de convergence d'une suite de fonctions continues, Fund. Math., 2(1921), 41–49

    Google Scholar 

  21. S. B. Steqkin, DeO shodimosti i rashodimosti trigonometriqeskih r_dov, Uspehi matem. nauk, 6(2)(1951), 148–149.

    Google Scholar 

  22. E. M. Stein, On limits ofseq uences ofop erators, Ann. Math., 74(1961), 40–170.

    Google Scholar 

  23. I. Ste_in i G. Ve_is, Vvedenie v garmoniqeski$i analiz na evklidovyh prostranstvah, Mir (Moskva, 1974) — E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press (Princeton 1971).

    Google Scholar 

  24. L. Tonelli, Serie trigonometriche, Zanichelli (Bologna, 1928).

  25. P. L. Ulnov, DeO rashodimosti rdov Fur'e, Uspehi matem. nauk, 12(3)(1957), 75–132

    Google Scholar 

  26. P. L. Ulnov, A. N. Kolmogorov i rashod wies r dy Fur'e, Uspehi matem. Nauk, 38(4)(1983), 51–90.

    Google Scholar 

  27. K. Zeller, DeUber Konvergenzmengen von Fourierreihen, Arch. Math., 6(1955), 335–340.

    Google Scholar 

  28. A. Zigmund, Trigonometriqeskie r_dy, Mir (Moskva, 1965) — A. Zygmund, Trigonometric series, University Press (Cambridge, (1959).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloshanskii, I.L. On Sets of Unbounded Divergence at Each Point of Multiple Fourier Series of a Function Equal Zero on a Closed Set. Analysis Mathematica 26, 81–98 (2000). https://doi.org/10.1023/A:1005613413968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005613413968

Keywords

Navigation