Skip to main content
Log in

Application of atomic force microscopy to the study of micromechanical properties of biological materials

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) has been used to study the micromechanical properties of biological systems. Its unique ability to function both as an imaging device and force sensor with nanometer resolution in both gaseous and liquid environments has meant that AFM has provided unique insights into the mechanical behaviour of tissues, cells and single molecules. As a surface scanning device, AFM can map properties such as adhesion and the Young's modulus of surfaces. As a force sensor and nanoindentor AFM can directly measure properties such as the Young's modulus of surfaces or the binding forces of cells. As a stress-strain gauge AFM can study the stretching of single molecules or fibres and as a nanomanipulator it can dissect biological particles such as viruses or DNA strands. The present paper reviews key research that has demonstrated the versatility of AFM and how it can be exploited to study the micromechanical behaviour of biological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • A-Hassan E, Heinz WF, Antonik MD, D'Costa NP, Nageswaran S, Schoenenberger C-A, Hoh JH (1998) Relative microelastic mapping of living cells by atomic force micrscopy. Biophys. J. 74: 1564–1578.

    Google Scholar 

  • Allen S (1997) Atomic force microscopy: A new way to look atchromatin. IEE Eng. Med. Biol. 16: 42–46.

    Google Scholar 

  • Antonik MD, D'Costa NP, Hoh JH (1997) A biosensor based on micromechanical interrogation of living cells. IEE Eng. Med. Biol. 16: 66–72.

    Google Scholar 

  • Balooch M, Wu-Magidi I-C, Balazs A, Lundkvist AS, Marshall SJ, Marshall GW, Siekhaus WJ, Kinney JH (1998) Viscoelasticproperties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation. J.Biomed. Mat. Res. 40: 539–544.

    Google Scholar 

  • Barbee KA, Davies PF, Ratneshwar L (1994) Shear stress-induced reorganization of the surface topography of living endothelialcells imaged by atomic force microscopy. Circ. Res. 74: 163–171.

    Google Scholar 

  • Binnig G, Quate CF, Gerber G (1986) Atomic force microscope.Phys. Rev. Lett. 56: 930–933.

    Google Scholar 

  • BowenWR, Hilal N, Lovitt RW, Wright CJ (1998a) Direct measurement of interactions between adsorbed protein layers using anatomic force microscope. J. Colloid Interface Sci. 197: 348–352.

    Google Scholar 

  • Bowen WR, Hilal N, Lovitt RW, Wright CJ (1998b) Direct measurement of the force of adhesion of a single cell using an atomicforce microscope. J. Colloid Surfaces A: Physicochem. Eng. Asp. 136: 231–234.

    Google Scholar 

  • Bowen WR, Hilal N, Lovitt RW, Wright CJ (1999) Characterisation of membrane surfaces: Direct measurement of Biological adhesion using an atomic force microscope. J. Mem. Sci. 154: 205–212.

    Google Scholar 

  • Bushell GR, Watson GS, Holt SA, Myhra S (1995) Imaging and nano-dissection of tobacco mosaic virus by atomic force microscopy.J. Microscopy 180: 174–181.

    Google Scholar 

  • Butt H-J, Jaschke M, Ducker W (1995) Measuring surface forcesin aqueous electrolyte solution with atomic force microscope.Bioelectrochem. Bioenerg. 38: 191–201.

    Google Scholar 

  • Chen X, Davies MC, Roberts CJ, Tendler SJ, Williams PM (1997)Recognition of protein adsorption onto polymer surfaces by scanning force microscopy and probe surface adhesion measurements with protein coated probes. Langmuir 13: 4106–4111.

    Google Scholar 

  • Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64: 403–408.

    Google Scholar 

  • D'Costa NP, Hoh JH (1995) Calibration of optical-lever sensitivity for atomic-force microscopy. Rev. Sci. Instrum. 66: 5096–5097.

    Google Scholar 

  • Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt H-J, Misevic GN (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267: 1173–1175.

    Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement ofcolloidal forces using an atomic force microscope. Nature 353: 239–241.

    Google Scholar 

  • Engel A, Lyubchenko YL, Muller D (1999) Atomic force microscopy:A powerful tool to observe biomolecules at work.Trends Cell Biol. 9: 77–80.

    Google Scholar 

  • Falvo MR, Washburn S, Superfine R, Finch M, Brooks-Jr FP, Chi V, Taylor RM (1997) Manipulation of individual viruses: Frictionand mechanical properties. Biophys. J. 72: 1396–1403.

    Google Scholar 

  • Feldman K, Tervoort T, Smith P, Spencer N (1998) Toward a forcespectroscopy of polymer surfaces. Langmuir 14: 372–378.

    Google Scholar 

  • Fisher TE, Oberhauser AF, Carrion-Vazquez M, Marszalek PE, Fernandez JM (1999) The study of protein mechanics with the atomic force microscope Trends Biochem. Sci. 24: 379–384.

    Google Scholar 

  • Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264: 415–417.

    Google Scholar 

  • Fritz M, Radmacher M, Petersen N, Gaub HE (1994) Visualizationand identification of structures by force modulation microscopy and drug induced degradation. J. Vac. Sci. Technol. B 12: 1526–1529.

    Google Scholar 

  • Fröberg JC, Ederth T (1999) On the possibility of glue contaminations in the surface force apparatus. J. Colloid Interface Sci. 210: 215–217.

    Google Scholar 

  • Goldman WH, Galneder R, Ludwig M, Kromm A, Ezzell RM(1998) Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy. FEBS Lett. 424: 139–142.

    Google Scholar 

  • Goldsbury C, Kistler J, Aebi U, Arvinte T, Cooper GJS (1999)Watching amyloid fibrils grow by time-lapse atomic force microscopy.J. Mol. Biol. 285: 33–39.

    Google Scholar 

  • Green J-BD, Novoradovsky A, Lee GU (1999) Effect of mechanicalcontact on the molecular recognition of biomolecules. Langmuir 15: 238–243.

    Google Scholar 

  • Haberle W, Horber JKH, Ohnesorge F, Smith DPE and Binnig G(1992) Insitu investigations of single living cells infected byviruses. Ultramicroscopy 42–44: 1161–1167.

    Google Scholar 

  • Han WH, Dlakic M, Zhu YJ, Lindsay SM, Harrington RE (1997)Strained DNA is kinked by low concentrations of Zn2C. Proc.Natl. Acad. Sci. U.S.A. 94: 10565–10570.

    Google Scholar 

  • Hoh J, Schoenenberger CA (1994) Surface morphology and mechanicalproperties of MDCK monolayers by atomic forcemicroscopy J. Cell Sci. 107: 1105–1114.

    Google Scholar 

  • Kasas S, Gotzos V, Cello MR (1993) Observation of living cells using the atomic force microscope. Biophys. J. 64: 539–544.

    Google Scholar 

  • Kinney JH, Balooch M, Marshall GW, Marshall SJ (1999) A micromechanicsmodel of the elastic properties of human dentine.Arch Oral Biol. 44: 813–822.

    Google Scholar 

  • Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A (1996)Visualization of plant cell walls by atomic force microscopy.Biophys. J. 70: 1138–1143.

    Google Scholar 

  • Lyubchenko YL, Oden PI, Lampner D, Lindsay SM, Dunker KA(1993) Atomic force microscopy of DNA and bacteriophage inair, water and propanol: the role of adhesion forces. Nucl. AcidsRes. 21: 1117–1123.

    Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS (1997) Visualization of super coiled DNA with atomic force microscopy in situ. Proc. Natl.Acad. Sci. U.S.A.. 94: 496–501.

    Google Scholar 

  • Mueller H, Butt HJ, Bamberg E (1999) Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophys. J. 76: 1072–1079.

    Google Scholar 

  • Muller DJ, Engel A, Carrascosa JL, Velez M (1997) The bacteriophagephi 29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO J. 16: 2547–2553.

    Google Scholar 

  • Ong YL, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E-coli bacteria and biomaterial surfaces.Langmuir 15: 2719–2725.

    Google Scholar 

  • Paige MF, Rainey JK, Goh MC (1998) Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy.Biophys. J. 74: 3211–3216.

    Google Scholar 

  • Parbhu AN, Bryson WG, Lal R (1999) Disulphide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: Correlative nano-indentation and elasticity measurement with an AFM. Biochemistry 38: 11755–11761.

    Google Scholar 

  • Parapura V, Haydon PG, Sakaguchi DS, Henderson E (1993)Atomic force microscopy and manipulation of living glial cells.J. Vac. Sci. Technol. A11: 773–775.

    Google Scholar 

  • Pincet F, Perez E, Wolfe J (1995) Does glue contaminate the surface forces apparatus. Langmuir 11: 373–374.

    Google Scholar 

  • Radmacher M, Fritz M, Cleveland JP, Walters DA, Hansma PK(1994) Imaging adhesion forces and elasticity of lysozyme adsorbedon mica with the afm. Langmuir 10: 3809–3814.

    Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK(1996) Measuring the viscoelastic properties of human plateletswith the atomic force microscope. Biophys. J. 70: 556–567.

    Google Scholar 

  • Rief M, Oesterhelt F, Heymann B, Gaub HE (1997a) Single molecule force microscopy on polysaccharides by atomic forcemicroscopy. Science 275: 1295–1297.

    Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997b)Reversible unfolding of individual titin immunoglobulin domainsby AFM. Science 276: 1109–1112.

    Google Scholar 

  • Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequencedependentmechanics of single DNA molecules. Nature Struct.Biol. 6: 346–349.

    Google Scholar 

  • Sagvolden G (1999) Protein adhesion force dynamics and singleadhesion events. Biophys. J. 77: 526–532.

    Google Scholar 

  • Sagvolden g, Giaever I, Pettersen EO, Feder J (1999) Cell adhesionforce microscopy. Proc. Natl. Acad. Sci U.S.A. 96: 471–476.

    Google Scholar 

  • Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL (1998)Structure and dynamics of supercoil-stabilized DNA cruciforms.J. Mol. Biol. 280: 61–72.

    Google Scholar 

  • Shroff SG, Saner DR, Ratneshwar L (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured byatomic force microscopy. Am. J. Physiol. 269(Cell Physiol. 38): C286–C292.

    Google Scholar 

  • Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys. J. 63: 1165–1169.

    Google Scholar 

  • Thalhammer S, Stark RW, Müller S, Weinberg J and Heckl WM(1997) The atomic force microscope as a new microdissectingtool for the generation of genetic probes. J. Struct. Biol. 119: 232–237.

    Google Scholar 

  • Thomson NH, Fritz M, Radmacher M, Cleveland JP, Schmidt CF, Hansma PK (1996) Protein tracking and detection of protein motionusing atomic force microscopy. Biophys. J. 70: 2421–2431.

    Google Scholar 

  • Thomson NH, Smith BL, Almqvist N, Schmitt L, Kashlev M, Kool ET, Hansma PK (1999) Oriented, active Escherichia coli RNApolymerase: An atomic force microscope study. Biophys. J. 76: 1024–1033.

    Google Scholar 

  • Toikka G, Hayes RA, Ralston J (1996) Adhesion of iron oxide tosilica studied by atomic force microscopy. J. Colloid InterfaceSci. 180: 329–338.

    Google Scholar 

  • Umeda A, Saito M, Amako K (1998) Surface characteristics of gram negative and gram positive bacteria in an atomic forcemicroscope image. Microbiol. Immun. 42: 159–164.

    Google Scholar 

  • Weisenhorn AL, Kasas S, Solletti J-M, Khorsandi M, Gotzos V, Römer DU, Lorenzi GP (1993) Deformation and height anomalyof soft surfaces studied with an AFM. Nanotechnology 4: 106–113.

    Google Scholar 

  • Xu W, Mulhern PJ, Blackford BL, Jericho MH, Templeton I (1994)A new atomic force microscopy technique for the measurementof the elastic properties of biological materials. ScanningMicroscopy 8: 499–506.

    Google Scholar 

  • Zhang P-C, Bai C, Ho PKH, Dai Y, Wu Y-S (1997) Observing interactionsbetween the IgG antigen and the anti-IgG antibody withAFM. IEE Eng. Med. Biol. 16: 42–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowen, W.R., Lovitt, R.W. & Wright, C.J. Application of atomic force microscopy to the study of micromechanical properties of biological materials. Biotechnology Letters 22, 893–903 (2000). https://doi.org/10.1023/A:1005604028444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005604028444

Navigation