Skip to main content
Log in

Stoichiometrically calculated yields of the growth-associated production of polyhydroxybutyrate in bacteria

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The requirement and supply of reducing power and ATP for the growth-associated synthesis of polyhydroxybutyrate (PHB) and the non-PHB biomass were balanced. By using glycerol, glucose, fructose, octanoate or oleate, the net balances of the PHB synthesizes result in an energy surplus which might contribute to growth. The calculated yields amount up to 90% PHB in cells correlating inversely to the P/O-quotient. The growth-associated PHB production contributes to two metabolic processes: supplying energy for growth and accumulating storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann JU, Müller S, Lösche A, Bley T, Babel W (1995) Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. J. Biotechnol. 39: 9–20.

    Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450–472.

    PubMed  Google Scholar 

  • Babel W (1994) Bioremediation of ecosystems by microorganism. Approaches for exploiting upper limits and widening bottlenecks. Bioremediation. The Tokyo '94 Workshop. OEDCDocuments, pp. 101–108

  • Babel W, Müller RH (1985) The influence of carbon catabolism on the auxiliary substrate effect. Acta Biotechnol. 5: 333–338.

    Google Scholar 

  • Choi JL, Lee YL (1999) High level production of poly(3-hydroxybutyrate-co-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl. Eur. Microbiol. 65: 4363–4368.

    Google Scholar 

  • Encarnacion S, Dunn M, Willms K, Mora J (1995) Fermentative andaerobic metabolism in Rhizobium etli. J. Bacteriol. 177: 3058–3066.

    PubMed  Google Scholar 

  • Föllner CG, Ackermann JU, Babel W (1997) Which is the reducing power generator in methylotrophs for the synthesis of poly(3-hydroxybutyric acid? (Poster4/14). In: Eggink G, ed. International Symposium on Bacterial Polyhydroxyalkanoates. Davos: ISBN 0–660–17083–3.

  • Hänggi UJ (1995) Requirements of bacterial polyesters as future substitute for conventional plastics for consumers good. FEMS Microbiol. Rev. 16: 213–220.

    Google Scholar 

  • Huijberts GNM, Eggink B (1996) Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT 2442. Appl. Microbiol. Biotechnol. 46: 233–239.

    Google Scholar 

  • Kim BS, Chang HN (1998) Production of poly/3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol. Lett. 20: 109–112.

    Google Scholar 

  • Kleber HP, Schlee D (1991) Biochemie. Teil 1 -Allgemeine und funktionelle Biochemie, 2th edn.Jena: Gustav Fischer.

  • Leaf TA, Srienc F (1998) Metabolic modelling of polyhydroxybutyrate biosynthesis. Biotechnol. Bioeng. 57: 557–570.

    PubMed  Google Scholar 

  • Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14: 431–438.

    Google Scholar 

  • Lee SY, Chang HN (1995) Production of poly(hydroxybutyric acid) by recombinant Escherichia coli strains. Can. J. Microbiol. 41 (Suppl. 1): 207–215.

    PubMed  Google Scholar 

  • Moser A (1981) Bioprozeßtechnik. Wien, New York: Springer-Verlag.

    Google Scholar 

  • Page WJ, Manchak J, Rudy B (1992) Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 58: 2866–2873.

    PubMed  Google Scholar 

  • Park JS, Park HC, Huh TL, Lee YH (1995) Production of polyhydroxybutyrate by Alkaligenes eutrophus transformants harbouring cloned phb CAB genes. Biotechnol. Lett. 17: 735–740.

    Google Scholar 

  • Son H, Park G, Lee S (1996) Growth-associated production of poly-β-hydroxybutyrate from glucose or alcoholic distillery wastewaterby Acinetobacillus sp. EL 9. Biotechnol. Lett. 18: 1229–1234.

    Google Scholar 

  • Wang F, Lee SY (1998) High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 58: 325–328.

    PubMed  Google Scholar 

  • Yamane T (1993) Yield of poly-D-(-)-3-hydroxybutyrate from various carbon sources: a theoretical study. Biotechnol. Bioeng. 41: 165–170.

    Google Scholar 

  • Zinn M, Egli T, Witholt B (1997) Application of a transient feed technique in continuous culture to detect double nutrient limited growth of Pseudomonas oleovorans (Poster4/08). In: Eggink G, ed. International Symposium on Bacterial Polyhydroxyalkanoates. Davos: ISBN 0–660–17083–3.

  • Zlotnikov K, Sanchevich N, Kadomceva V, Zlotnikov A, Akimenko V (1997) Potentials of Bacillus megatherium for industrial production of PHAs (Poster 8/01). In: Eggink G, ed. International Symposium on Bacterial Polyhydroxyalkanoates. Davos: ISBN 0–660–17083–3.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, EJ. Stoichiometrically calculated yields of the growth-associated production of polyhydroxybutyrate in bacteria. Biotechnology Letters 22, 1437–1442 (2000). https://doi.org/10.1023/A:1005602900090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005602900090

Navigation