Skip to main content
Log in

A Model Without a Mimic: Aristolochic Acids from the California Pipevine Swallowtail, Battus philenor hirsuta, and Its Host Plant, Aristolochia californica

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The pipevine swallowtail, Battus philenor, feeds exclusively on plants in the genus Aristolochia, many of which are known to contain the toxic alkaloids collectively known as aristolochic acids. Pipevine swallowtails sequester these compounds and use them for their own defense against predators. Numerous palatable butterflies are involved in Batesian mimicry complexes with B. philenor over its range. The California subspecies of the pipevine swallowtail, B. philenor hirsuta, has no mimics. Analysis of the butterfly and its only host plant, Aristolochia californica, indicate that both contain aristolochic acid. Aristolochic acid (I) and (II) are the primary aristolochic acids found in A. californica. The highest concentration of aristolochic acids was found in the flowers, which bloom before B. philenor emerges. Concentrations of aristolochic acids decreased in the leaves but not in stem tissue over the course of the season. Butterflies contained primarily aristolochic acid (I). Aristolochic acid content of individuals from Arizona, which are involved in mimicry complexes, did not differ from California populations. Thus, lack of California mimics cannot be attributed to low aristolochic acid content of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Berenbaum, M. R., Zangerl, A. R., and Nitao, J. K. 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm. Evolution 40:1215–1228.

    Google Scholar 

  • Brower, J. V. Z. 1958. Experimental studies of mimicry in some North American butterflies. Part II. Battus philenor and Papilio troilus, P. polyxenes and P. glaucus. Evolution 12:123–136.

    Google Scholar 

  • Brower, J V. Z. 1960. Experimental studies of mimicry. IV. The reactions of starlings to different proportions of models and mimics. Am. Nat. 94:271–282.

    Google Scholar 

  • Brower, L. P. 1984. Chemical defence in butterflies, pp. 109–134, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, New York.

    Google Scholar 

  • Brower, L. P., and Brower, J. V. Z. 1962. The relative abundance of model and mimic butterflies in natural populations of the Battus philenor mimicry complex. Ecology 43:154–158.

    Google Scholar 

  • Brower, L. P., Alcock, J., and Brower, J. V. Z. 1971. Avian feeding behavior and the selective advantage of incipient mimicry, pp. 261–274, in R. Creed (ed.). Ecological Genetics and Evolution, Essays in Honour of E. B. Ford. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Brower, L. P., Seiber, J. N., Nelson, C. J., Lynch, S. P., and Tuskes, P. M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus, reared on the milkweed, Asclepias eriocarpa, in California. J. Chem. Ecol. 8:579–633.

    Google Scholar 

  • Chen, Z. L., and Zhu, D. Y. 1987. Aristolochia alkaloids, pp. 29–65, in A. Brossi (ed.). The Alkaloids: Chemistry and Pharmacology. Academic Press, San Diego.

    Google Scholar 

  • Clarke, C. A., and Sheppard, P. M. 1962. The genetics of the mimetic butterfly Papilio glaucus. Ecology 43:159–161.

    Google Scholar 

  • Codella, S. G., Jr., and Lederhouse, R. C. 1989. Intersexual comparison of mimetic protection in the black swallowtail butterfly, Papilio polyxenes: Experiments with captive blue jay predators. Evolution 43:410–420.

    Google Scholar 

  • Hagen, R. H., and Scriber, J. M. 1995. Sex chromosomes and speciation of swallowtail butterflies, pp. 211–227, in J. M. Scriber, Y. Tsubaki, and R. C. Lederhouse (eds.). Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publishers, Gainesville, Florida.

    Google Scholar 

  • Hagen, R. H., Lederhouse, R. C., Bossart, J. K., and Scriber, J. M. 1991. Papilio canadensis and P. glaucus (Papilionidae) are distinct species. J. Lepid. Soc. 45:245–258.

    Google Scholar 

  • Jeffords, M. R., Sternburg, J. G., and Waldbauer, G. P. 1979. Batesian mimicry: field demonstration of the survival value of pipevine swallowtail and monarch color patterns. Evolution 33:275–286.

    Google Scholar 

  • Koch, P. B., Keys, D. N., Rocheleau, T., Aronstein, K., Blackburn, M. M., Carroll, S. B., and Ffrench-Constant, R. H. 1998. Regulation of dopa decarboxylase expression during colour pattern formation in wild-type and melanic tiger swallowtail butterflies. Development 125:2303–2313.

    Google Scholar 

  • Macdougall, A., and Dawkins, M. S. 1998. Predator discrimination error and the benefits of Müllerian mimicry. Anim. Behav. 55:1281–1288.

    Google Scholar 

  • Mappes, J., and Alatalo, R. V. 1997. Batesian mimicry and signal accuracy. Evolution 51:2050–2053.

    Google Scholar 

  • Mckey, D. 1979. The distribution of secondary compounds within plants, pp. 56–133, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites, 1st ed. Academic Press, New York.

    Google Scholar 

  • Moranz, R., and Brower, L. P. 1998. Geographic and temporal variation of cardenolide-based chemical defenses of queen butterfly (Danaus gilippus) in northern Florida. J. Chem. Ecol. 24:905–932.

    Google Scholar 

  • Nishida, R., Weintraub, J. D., Feeny, P., and Fukami, H. 1993. Aristolochic acids from Thottea spp. (Aristolochiaceae) and the osmeterial secretions of Thottea feeding troidine swallowtail larvae (Papilionidae). J. Chem. Ecol. 19:1587–1594.

    Google Scholar 

  • Odendaal, F. J., Rausher, M. D., Benrey, B., and Nunez-Farfan, J. 1987. Predation by Anolis lizards on Battus philenor raises questions about butterfly mimicry systems. J. Lepid. Soc. 41:141–144.

    Google Scholar 

  • Platt, A. P., and Brower, L. P. 1968. Mimetic versus disruptive coloration in intergrading populations of Limenitis arthemis and Astyanax butterflies. Evolution 22:699–718.

    Google Scholar 

  • Platt, A. P., Coppinger, R. P., and Brower, L. P. 1971. Demonstration of the selective advantage of mimetic Limenitis butterflies presented to caged avian predators. Evolution 5:692–701.

    Google Scholar 

  • Poulton, E. B. 1909. Mimicry in butterflies of North America. Ann. Entomol. Soc. Am. 2:203–242.

    Google Scholar 

  • Racheli, T., and Oliverio, M. 1993. Biogeographical patterns of the neotropical genus Battus Scopoli 1777 (Lepidoptera Papilionidae). Trop. Zool. 6:55–65.

    Google Scholar 

  • Racheli, T., and Pariset, L. 1992. II genere Battus tassonomia e storia naturale. Fragm. Entomol. (Roma) (Suppl.) 23:1–163.

    Google Scholar 

  • Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54, In G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: The Interaction with Secondary Plant Metabolites. Academic Press, London.

    Google Scholar 

  • Rhoades, D. F., and Cates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 10:168–213.

    Google Scholar 

  • Ritland, D. B. 1994. Variation in palatability of queen butterflies (Danaus gilippus) and implications regarding mimicry. Ecology 75:732–746.

    Google Scholar 

  • Rothschild, M., Reichstein, T., Von Euw, J., Aplin, R., and Harman, R. R. M. 1970. Toxic Lepidoptera. Toxicon 8:293–299.

    Google Scholar 

  • Scriber, J. M., Hagen, R. H., and Lederhouse, R. C. 1996. Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae). Evolution 50:222–236.

    Google Scholar 

  • Shapiro, A. M. 1974. The butterfly fauna of the Sacramento Valley, California. J. Res. Lepid. 13:73–82, 115–122, 137–148.

    Google Scholar 

  • Shapiro, A. M. 1984. Geographical ecology of the Sacramento Valley riparian butterfly fauna, pp. 934–941, in R. E. Warner and K. M. Hendrix (eds.). California Riparian Systems: Ecology, Conservation, and Productive Management. University of California Press, Berkeley.

    Google Scholar 

  • Sims, S. R., and Shapiro, A. M. 1983. Seasonal phenology of Battus philenor (L.) (Papilionidae) in California. J. Lepid. Soc. 37:281–288.

    Google Scholar 

  • Sperling, F. A., and Harrison, R. G. 1994. Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution 48:408–422.

    Google Scholar 

  • Tsai, T.-H., Chou, C. J., Lin, L. C., Tsai, W. J., and Chen, C. F. 1993. Determination of aristolochic acid in rabbit plasma by high-performance liquid chromatography with photodiode-array ultraviolet detection and its pharmacokinetics application. J. Liq. Chromatogr. 16:1173–1182.

    Google Scholar 

  • Turner, J. R. G. 1984. Mimicry: the palatability spectrum and its consequences, pp. 141–161, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. Academic Press, New York.

    Google Scholar 

  • Uesugi, K. 1996. The adaptive significance of batesian mimicry in the swallowtail butterfly, Papilio polytes (Insect, Papilionidae): Associative learning in a predator. Ethology 102:762–775.

    Google Scholar 

  • UrzÚa, A., and Priestap, H. 1985. Aristolochic acids from Battus polydamas. Biochem. Syst. Ecol. 13:169–170.

    Google Scholar 

  • UrzÚa, A., Rodriguez, R., and Cassesl, B. 1987. Fate of ingested aristolochic acids in Battus archidamus. Biochem. Syst. Ecol. 15:687–690.

    Google Scholar 

  • Vane-Wright, R. I., Raheem, D. C., Cieslak, A., and Vogler, A. P. 1999. Evolution of the mimetic African swallowtail butterfly Papilio dardanus: Molecular data confirm relationships with P. phorcas and P. constantinus. Biol. J. Linn. Soc. 66:215–229.

    Google Scholar 

  • Zangerl, A. R., and Bazzaz, F. A. 1992. Theory and pattern in plant defense allocation, pp. 363–391, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. Ecology, Evolution, and Genetics. The University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fordyce, J.A. A Model Without a Mimic: Aristolochic Acids from the California Pipevine Swallowtail, Battus philenor hirsuta, and Its Host Plant, Aristolochia californica. J Chem Ecol 26, 2567–2578 (2000). https://doi.org/10.1023/A:1005588829864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005588829864

Navigation