Skip to main content
Log in

Increased Stability and Catalytic Efficiency of Yeast Hexokinase Upon Interaction with Zwitterionic Micelles. Kinetics and Conformational Studies

  • Published:
Bioscience Reports

Abstract

The effect of ligands (glucose, ATP and Mg2+) and zwitterionic micellesof lysophosphatidylcholine (LPC) or N-hexadecyl-N,N-dimethyl-3-ammoniumpropanesulfonate (HPS) in the yeast hexokinase (HK) stability was studied at35°C. The thermal inactivation kinetics followed one-exponentialdecay. The effect of ligands on protecting the enzyme against inactivationfollowed the order: glucose>glucose/Mg2+>ATP/Mg2+≌Mg2+≌bufferonly. Both LPC and HPS micelles increased the enzyme stability only whenthe incubation medium contained glucose or glucose/Mg2+,suggesting that the protein conformation is a key prerequisite for theenzyme-micelle interaction to take place. This enzyme-micelle interactionresulted in an increased catalytic efficiency (with a decrease in Km forATP and increase in Vmax as well as in changes on the tertiary (intrinsicfluorescence) structure of the yeast hexokinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Martinek, K., Levashov, A. V., Klyachko, N. L., Pantin, V. I., and Berezin, I. V. (1981) Biochim. Biophys. Acta 657:277–294.

    PubMed  Google Scholar 

  2. Fletcher, P. D. I., Rees, G. D., Robinson, B. H., and Freedman, R. B. (1985) Biochim. Biophys. Acta 832:204–214.

    Google Scholar 

  3. Martinek, K., Levashov, A. V., Klyachko, N. L., Khmelnitsky, Yu. L., and Berezin, I. V. (1986) Eur. J. Biochem. 155:453–468.

    PubMed  Google Scholar 

  4. Luisi, P. L., Giomini, M., Pileni, M. P., and Robinson, B. H. (1988) Biochim. Biophys. Acta 947:209–246.

    PubMed  Google Scholar 

  5. Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitsky, Yu. L., and Levashov, A. V. (1989) Biochim. Biophys. Acta 981:161–172.

    PubMed  Google Scholar 

  6. Fletcher, P. D. I., Freedman, R. B., Robinson, B. H., and Rees, G. D. (1987) Biochim. Biophys. Acta 912:278–282.

    Google Scholar 

  7. Ruckenstein, E., and Karpe, P. (1991) J. Phys. Chem. 92:6028–6032.

    Google Scholar 

  8. Karpe, P., and Ruckenstein, E. (1991) J. Colloid Interface Sci. 141:534–552.

    Google Scholar 

  9. Gajjar, L., Dubey, R. S., and Srivastava, R. C. (1994) Appl. Biochem. Biotechnol. 49:101–112.

    PubMed  Google Scholar 

  10. Lalitha, J., and Mulamani, V. H. (1997) Biochem. Mol. Biol. Int. 41:797–803.

    PubMed  Google Scholar 

  11. Rariy, R. V., Bec, N., Klyachko, N. L., Levashov, A. V., and Balny, C. (1998) Biotechnol. Bioeng. 57:552–556.

    PubMed  Google Scholar 

  12. Easterby, J. S., and Rosemeyer, M. A. (1972) Eur. J. Biochem. 28:241–252.

    PubMed  Google Scholar 

  13. Derechin, M., Rustum, Y. M., and Barnard, E. A. (1972) Biochemistry 11:1793–1797.

    PubMed  Google Scholar 

  14. Schmidt, J. J., and Colowick, S. P. (1973) Arch. Biochem. Biophys. 158:458–470.

    PubMed  Google Scholar 

  15. Bennett, Jr., W. S., and Steitz, T. A. (1978) Proc. Natl. Acad. Sci. USA 75:4848–4852.

    PubMed  Google Scholar 

  16. Kaji, A., and Colowick, S. P. (1965) J. Biol. Chem. 240:4454–4462.

    PubMed  Google Scholar 

  17. Dela Fuente, G., Lagunas, R., and Sols, A. (1970) Eur. J. Biochem. 16:226–233.

    PubMed  Google Scholar 

  18. Hoggett, J. G., and Kellett, G. L. (1976) Eur. J. Biochem. 66:65–67.

    PubMed  Google Scholar 

  19. Takahashi, K., Casey, J. L., and Sturtevant, J. M. (1981) Biochemistry 20:4693–4697.

    PubMed  Google Scholar 

  20. Catazano, F., Gambuti, A., Graziano, G., and Barone, G. (1997) J. Biochem. (Tokyo) 121:568–577.

    PubMed  Google Scholar 

  21. Shill, J. P., Peters, B. A., and Neet, K. E. (1974) Biochemistry 13:3864–3871.

    PubMed  Google Scholar 

  22. Williams, D. C., and Jones, J. G. (1976) Biochem. J. 155:661–667.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, R., Bianconi, M.L. Increased Stability and Catalytic Efficiency of Yeast Hexokinase Upon Interaction with Zwitterionic Micelles. Kinetics and Conformational Studies. Biosci Rep 20, 41–49 (2000). https://doi.org/10.1023/A:1005583117296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005583117296

Navigation