Skip to main content

Estimates of the Climate Response to Aircraft CO2 and NO x Emissions Scenarios

Abstract

A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.

This is a preview of subscription content, access via your institution.

References

  1. Baughcum, S. L., Tritz, T. G., Henderson, S. C., and Pickett, D. C.: 1996a, Scheduled Civil Aircraft Emission Inventories for 1992-Database Development and Analysis, NASA Contractor Report 4700.

  2. Baughcum, S. L., Henderson, S. C., and Tritz, T. G.: 1996b, Scheduled Civil Aircraft Emission Inventories for 1976 and 1984-Database Development and Analysis, NASA Contractor Report 4722.

  3. Baughcum, S. L., Sutkus, D. J., and Henderson, S. C.: 1998, Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic, NASA CR-1998–207638.

  4. Brasseur, G. P., Cox, R. A., Hauglustaine, D., Isaksen, I., Lelieveld, J., Lister, D. H., Sausen, R., Schumann, U., Wahner, A., and Wiesen, P.: 1998, 'European Assessment of the Atmospheric Effects of Aircraft Emissions', Atmos. Environ. 32, 2329–2418.

    Google Scholar 

  5. Cubasch, U., Hasselmann, K., Höck, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., and Sausen, R.: 1992, 'Time-Dependent Greenhouse Warming Computations with a Coupled Ocean-Atmosphere Model', Clim. Dyn. 8, 55–69.

    Article  Google Scholar 

  6. Dameris, M., Grewe, V., Köhler, I., Sausen, R., Brühl, C., Gross, J.-U., and Steil, B.: 1998, 'Impact of Aircraft NOx-Emissions on Tropospheric and Stratospheric Ozone. Part II: 3-D Model Results', Atmos. Environ. 32, 3185–3200.

    Google Scholar 

  7. Ehhalt, D. H. and Rohrer, F.: 1995, 'The Impact of Commercial Aircraft on Tropospheric Ozone', in Brandy, A. R. (ed.), The Chemistry of the Atmosphere-Oxidants and Oxidation in the Earth's Atmosphere, 7th BOC Priestley Conference, Lewisburg, Pennsylvania, 1994, The Royal Society of Chemistry, Special Publication No. 170, pp. 105–120.

  8. Enting, I. G., Wigley, T. M. L., and Heimann, M.: 1994, Future Emissions and Concentrations of Carbon Dioxide-Key Ocean/Atmosphere/Land Analyses, CSIRO Division of Atmospheric Research Technical Paper No. 31, p. 120.

  9. FESG: 1998, Long Range Scenarios, Report of the Forecasting and Economic Analysis Sub-Group (FESG), obtainable from Air Transport Bureau, ICAO, 999 University Street, Montreal, Quebec, H3C 5H7, Canada.

    Google Scholar 

  10. Friedl, R. (ed.): 1997, Atmospheric Effects of Subsonic Aircraft-Interim Assessment Report of the Advanced Subsonic Technology Program, NASA Reference Publication 1400, p. 143.

  11. Gardener, R., Adams, K., Cook, T., Deidewig, F., Ernedal, S., Falk, R., Fleuti, E., Herms, E., Johnson, C. E., Lecht, M., Lee, D. S., Leech, M., Lister, D., Massé, B., Metcalfe, M., Newton, P., Schmitt, A., Vandenbergh, C., and van Drimmelen, R.: 1997, 'The ANCAT/EC Global Inventory of NOx Emissions from Aircraft', Atmos. Environ. 31, 1751–1766.

    Google Scholar 

  12. Gardener, R. M., Adams, J. K., Cook, T., Larson, L. G., Falk, R. S., Fleuti, E., Förtsch, W., Lecht, M., Lee, D. S., Leech, M. V., Lister, D. H., Massé, B., Morris, K., Newton, P. J., Owen, A., Parker, E., Schmitt, A., ten Have, H., and Vandenberghe, C.: 1998, ANCAT/EC2 Global Aircraft Emissions Inventories for 1991/92 and 2015, Eur No. 18179, ISBN 92–828–2914–6.

  13. Grewe, V., Dameris, M., Hein, R., Koehler, I., and Sausen, R.: 1999, 'Impact of Future Subsonic Aircraft NOx Emissions on the Atmospheric Composition', Geophys. Res. Lett. 26, 47–50.

    Google Scholar 

  14. Grooß, J.-U., Brühl, C., and Peter, T.: 1998, 'Impact of Aircraft NOx-Emissions on Tropospheric and Stratospheric Ozone. Part I: Chemistry and 2-D Model Results', Atmos. Environ. 32, 3173–3184.

    Google Scholar 

  15. Hansen, J., Sato, M., and Ruedy, R.: 1997, 'Radiative Forcing and Climate Response', J. Geophys. Res. 102, 6831–6864.

    Google Scholar 

  16. Hasselmann, K., Sausen, R., Maier-Reimer, E., and Voss, R.: 1993, 'On the Cold Start Problem in Transient Simulations with Coupled Atmosphere-Ocean Models', Clim. Dyn. 9, 53–61.

    Google Scholar 

  17. Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., and von Storch, H.: 1997, 'Sensitivity Study of Optimal CO2 Emission Paths Using a Simplified Structural Integrated Assessment Model (SIAM)', Clim. Change 37, 345–386.

    Google Scholar 

  18. Hauglustaine, D. A., Granier, C., Brasseur, G. P., and Megie, G.: 1994, 'Impact of Present Aircraft Emissions of Nitrogen Oxides on Tropospheric Ozone and Climate Forcing', Geophys. Res. Lett. 21, 2031–2034.

    Google Scholar 

  19. IEA: 1991, Oil and Gas Information 1988–1990. Table 4: World Demand by Main Product Groups, World, Aviation Fuels, IEA/OECD, 2, rue Andre-Pascal, 75775 Paris Cedex 16, France.

    Google Scholar 

  20. IPCC: 1990, Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change-The IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., p. 365.

    Google Scholar 

  21. IPCC: 1992, Houghton, J. H., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992-The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, U.K., p. 200.

    Google Scholar 

  22. IPCC: 1995, Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, Hoesung, Callander, B. A., Harris, N., and Maskell, K. (eds.), Climate Change 1994-Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, U.K., p. 339.

    Google Scholar 

  23. IPCC: 1996, Houghton, J. H., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995-The Science of Climate Change, Cambridge University Press, Cambridge, U.K., p. 572.

    Google Scholar 

  24. IPCC: 1999, Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M. (eds.), Aviation and the Global Atmosphere-A Special Report of IPCC Working Groups I and III, Cambridge University Press, Cambridge, U.K., p. 373.

    Google Scholar 

  25. Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., Le Quere, C., and Sarmiento, J. L.: 1996, 'An Efficient and Accurate Representation of Complex Oceanic and Biospheric Models of Anthropogenic Carbon Uptake', Tellus 48B, 397–417.

    Google Scholar 

  26. Maier-Reimer, E.: 1987, 'The Biological Pump in the Greenhouse', Global Plan. Clim. Change 8, 13–15.

    Google Scholar 

  27. Maier-Reimer, E. and Hasselmann, K.: 1987, 'Transport and Storage of CO2 in the Ocean-An Inorganic Ocean-Circulation Carbon Cycle Model', Clim. Dyn. 2, 63–90.

    Google Scholar 

  28. Masood, E.: 1997, 'Asian Economies Lead Increase in Carbon Dioxide Emissions', Nature 388, 213.

    Google Scholar 

  29. Nüsser, H.-G. and Schmitt, A.: 1990, 'The Global Distribution of Air Traffic at High Altitudes, Related Fuel Consumption and Trends', in Schumann, U. (ed.), Air Traffic and the Environment-Background, Tendencies and Potential Global Atmospheric Effects, Lecture Notes in Engineering, Springer-Verlag, Berlin, Heidelberg, pp. 1–11.

    Google Scholar 

  30. Ponater, M., Brinkop, S., Sausen, R., and Schumann, U.: 1996, 'Simulating the Global Atmospheric Response to Aircraft Water Vapour Emissions and Contrails-A First Approach Using a GCM', Ann. Geophys. 14, 941–960.

    Google Scholar 

  31. Ponater, M., Sausen, R., Feneberg, B., and Roeckner, E.: 1999, 'Equilibrium Climate Response to Aircraft Induced Ozone Changes', Clim. Dyn., in press. Also available as Report No. 103, DLR-Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany, ISSN 0943–4771, p. 26.

  32. Rind, D. and Lonergan, P.: 1995, 'Modeled Impacts of Stratospheric Ozone and Water Vapor Perturbations with Implications for High-Speed Civil Transport Aircraft', J. Geophys. Res. 100, 7381–7396.

    Google Scholar 

  33. Rind, D., Lonergan, P., and Shah, K.: 1996, 'Climatic Effect of Water Vapor Release in the Upper Troposphere', J. Geophys. Res. 101, 29395–29406.

    Google Scholar 

  34. Sausen, R., Feneberg, B., and Ponater, M.: 1997, 'Climatic Impact of Aircraft Induced Ozone Changes', Geophys. Res. Lett. 24, 1203–1206.

    Google Scholar 

  35. Schmitt, A. and Brunner, B.: 1997, Emissions from Aviation and Their Development over Time, DLR-Mitteilung, 97–04, DLR Köln, pp. 37–52.

  36. Schumann, U.: 1997, 'The Impact of Nitrogen Oxides Emissions from Aircraft upon the Atmosphere at Flight Altitudes, Results from the AERONOX Project', Atmos. Environ. 31, 1723–1733.

    Google Scholar 

  37. Siegenthaler, U. and Joos, F.: 1992, 'Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle', Tellus 44B, 186–207.

    Google Scholar 

  38. Vedantham, A. and Oppenheimer, M.: 1998, 'Long-Term Scenarios for Aviation: Demand and Emissions of CO2 and NOx', Energy Policy 8, 625–641.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sausen, R., Schumann, U. Estimates of the Climate Response to Aircraft CO2 and NO x Emissions Scenarios. Climatic Change 44, 27–58 (2000). https://doi.org/10.1023/A:1005579306109

Download citation

Keywords

  • Fuel Consumption
  • Emission Scenario
  • Nitrogen Oxide
  • Aviation Fuel
  • Small Temperature Change