Abstract
Although the exact prevalence of metabolic abnormalities in autism spectrum disorders is unknown, several metabolic defects have been associated with autistic symptoms. These include phenylketonuria, histidinemia, adenylosuccinate lyase deficiency, dihydropyrimidine dehydrogenase deficiency, 5′-nucleotidase superactivity, and phosphoribosylpyrophosphate synthetase deficiency. When the metabolic consequences of an enzyme defect are well defined (e.g., phenylketonuria, 5′-nucleotidase superactivity), treatment with diet, drugs, or nutritional supplements may bring about a dramatic reduction in autistic symptoms. This review evaluates evidence for metabolic etiologies in autism spectrum disorders, as well as for the efficacy of dietary and vitamin treatments. The relationship between gastrointestinal abnormalities and autism spectrum disorders is also considered.
This is a preview of subscription content, access via your institution.
REFERENCES
Berger, R., Stoker-de Vries, S. A., Waldman, S. K., Duran, M., Beemer, F. A., Debree, P. K., Weits-Binnerts, J. J., Penders, T. J., & van der Woude, J. K. (1984). Dihydropyrimidine dehdrogenase deficiency leading to thymine-uraciluria. An inborn error of pyrimidine metabolism. Clinical Chimica Acta, 141, 227–234.
Bolmen, W. M., & Richmond, J. A. (1999). Journal of Autism and Developmental Disorders, 29, 191–194.
Coleman, N. (1989). Autism: Nondrug biological treatments. In C. Gilberg (Ed.), Diagnosis and treatment of autism (pp. 219–235). New York: Plenum Press.
Coleman, M., & Gillberg, C. (1993). Biology of the autistic syndromes (pp. 203–217). London: MacKeith.
Coleman, M., Langrebe, M., & Langrebe, A. (1974). Progressive seizures with hyperuricosuria reversed by allopurinol. Archives of Neurology, 31, 238–242.
Coleman, M., Langrebe, M., & Langrebe, A. (1976). Purine autism. Hyperuricosuria in autistic children: Does this identify a subgroup of autism? In M. Coleman (Ed.), The autistic syndromes (pp. 183–214). New York: Elsevier.
D'Eufemia, P., Celli, M., Finocchiaro, R., Pacifico, L., Viazzi, L., Zaccagnini, M., Cardi, E., & Giardini, O. (1996). Abnormal intestinal permeability in children with autism. Acta Pediatrica, 85, 1076–1079.
Fernell, E., Watanabe, Y., Adolfsson, I., Tani, Y., Bergstrom, M., Hartvig, P., Lilja, A., von Knorring, A.-L., Gillberg, C., & Langstrom, B. (1997). Possible effects of tetrahydrobiopterin treatment in six children with autism-clinical and positron emission tomography data: A pilot study. Developmental Medicine and Child Neurology, 39, 313–318.
Goodwin, M. S., Cowan, M. A., & Goodwin, T. C. (1971). Malabsorbtion and cerebral dysfunction: A multivariate and comparative study of autistic children. Journal of Autism and Childhood Schizophrenia, 1, 48–62.
Hooft, C., Van Nevel, C., & De Schaepdryver, A. F. (1968). Hyperuricosuric encephalopathy without hyperuricemia. Archives of Diseases of Children, 43, 734–737.
Horvath, K., Papadimitriou, J. C., Rabsztyn, A., Drachenberg, C., & Tildon, J. T. (1999). Gastrointestinal abnormalities in children with autistic disorder. Journal of Pediatrics, 135, 559–563.
Institute for Child Behavior Research. (1987). Is folic acid effective? Autism Research Reviews International, 4, 2.
Kleijnen, J., & Knipschild, P. (1991). Niacin and vitamin B6 in mental functioning: A review of controlled trials in humans. Biological Psychiatry, 29, 931–941.
Knivsberg, A. M., Wiig, K., Lind, G., Nogland, M., & Reichelt, K. L. (1990). Dietary intervention in autistic syndromes. Developmental Brain Dysfunction, 3, 315–327.
Kredich, N. M., & Harshfield, M. S. (1983). Immunodeficiency diseases caused by adenosine deaminase deficiencyand purine nucleoside phosphorylase deficiency. In J. B. Stanbury, J. B. Wyngaerden, D. S. Frederickson, J. L. Goldstein, & M. S. Brown (Eds.), The metabolic basis of inherited disease (pp. 1157–1183). New York: McGraw-Hill.
Lelord, G., Barthe1emy, C., & Martineau, N. (1988). Clinical and biological effects of vitamin B6 plus magnesium in autistic subjects. In J. Laklam & R. Reynolds (Eds.), Vitamin B6 responsive disorders in humans (pp. 329–356). New York: Liss.
Lis, A. W., McLaughlin, R. K., Lis, E. W., & Stubbs, E. G. (1976). Profiles of ultraviolet absorbing components of urine from autistic children, as obtained by high-resolution ion-exchange chromatography. Clinical Chemistry, 22, 1528–1532.
McDougle, C. J., Naylor, S. T., Goodman, W. K., Volkmar, F. R., Cohen, D. J., & Price, L. H. (1993). Acute tryptophan depletion in autistic disorder: A controlled case study. Biological Psychiatry, 33, 547–550.
Nowell, M. A., Hacknney, D. B., Muraki, A. S., & Coleman, M. (1990). Varied MR appearance of autism: Fifty-three pediatric patients having the full autistic syndrome. Magnetic Resonance Imaging, 8, 811–816.
Page, T., & Coleman, M. (1998). De novo purine synthesis is increased in the fibroblasts of purine autism patients. In A. Greismacher, P. Chiba, & M. M. Muller (Eds.), Purine and pyrimidine metabolism in men (Vol. 9, pp. 793–796). New York: Plenum Press.
Page, T., Yu, A., Fontanesi, J., & Nyhan, W. L. (1997). Developmental disorder associated with increased nucleotidase activity. Proceedings of the National Academy of Sciences (U.S.), 94, 11601–11606.
Reichelt, K. L., Knivsberg, A. M., Nodland, M., & Lind, G. (1994). Nature and consequences of hyperpeptiduria and bovine casomorphins found in autistic syndromes. Developmental Brain Dysfunction, 7, 71–85.
Rosenberg, L. (1983). Disorders of propionate and methylmalonate metabolism. In J. B. Stanbury, J. B. Wyngaerden, D. S. Frederickson, J. L. Goldstein, & M. S. Brown (Eds.), The metabolic basis of inherited disease (pp. 474–497). New York: McGraw-Hill.
Rosenberger-Deblesse, J., & Coleman, M. (1986). Brief report: Preliminary evidence for multiple etiologies in autism. Journal of Autism and Developmental Disorders, 16, 385–392.
Salerno, C., D'Euphemia, P., Finocchiaro, R., Celli, M., Spalice, A., Ianetti, P., Crifo, C., & Giardini, O. (1999). Effect of D-ribose on purine synthesis and neurological symptoms in a patient with adenylsuccinase deficiency. Biochimica Biophysica Acta, 1453, 135–140.
Sandler, A. D., Sutton, K. A., DeW??15??, J., Girardi, M. A., Sheppard, V., & Bodfish, J. W. (1999). Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. New England Journal of Medicine, 341, 1801–1806.
Shaw, W., Kassen, E., & Chavez, E. (1995). Increased urinary excretions of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clinical Chemistry, 41, 1094–1104.
Stubbs, G., Litt, M., Lis, E., Jackson, R., Voth, W., Lindberg, A., & Litt, R. (1982). Adenosine desminase activity decreased in autism. Journal of the American Academy of Child Psychiatry, 21, 71–74.
Van den Berghe, G., Van den Berghe, A., Vincent, M. F., & Jacken, J. (1994). Adenylsuccinate lyase deficiency: An update. In A. Sahota & M. W. Taylor (Eds.), Purine and pyrimidine metabolism in man (Vol. 8, pp. 363–366). New York: Plenum Press.
Visconti, P., Piazzi, S., Posar, A., Santi, A., Pipitone, E., & Rossi, P. G. (1994). Amino acids and infantile autism. Developmental Brain Dysfunction, 7, 86–92.
Wada, Y., Nishimura, Y., Tanabu, M., Yoshimura, Y., Ilnuma, K., Yoshida, T., & Arakawa, T. (1974). Hypouric??16??ic, mentally retarded infant with a defect in 5-phosphoribosyl-1-pyrophosphate synthetase. Tohoku Journal of Experimental Medicine, 113, 149–157.
Young, J. G., Brasic, J. R., & Leven, L. (1990). Genetic causes of autism and the pervasive developmental disorders. In S. I. Deutsch, A. Weizman, & R. Weizman (Eds.), Application of basic neuroscience to child psychiatry (pp. 183–216). New York: Plenum Press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Page, T. Metabolic Approaches to the Treatment of Autism Spectrum Disorders. J Autism Dev Disord 30, 463–469 (2000). https://doi.org/10.1023/A:1005563926383
Issue Date:
DOI: https://doi.org/10.1023/A:1005563926383
- Autism
- metabolic abnormalities
- enzyme defects