Skip to main content
Log in

Muscle carnitine acetyltransferase and carnitine deficiency in a case of mitochondrial encephalomyopathy

  • Published:
Journal of Inherited Metabolic Disease

Abstract

Profound decrease of the carnitine acetyltransferase activity (0.08 U/g wet weight; 1.67% of control) and carnitine deficiency (total carnitine was 230 nmol/g wet weight in the patient vs 2730 in the controls) was detected in the skeletal muscle of a female paediatric patient. She died of her illness, which included cerebellar symptoms and slight muscle spasticity affecting mainly the lower extremities, at 1 year of age. Histological examination of the autopsy specimens revealed a selective Purkinje cell degeneration in the cerebellum: the cells had abnormal position, were shrunken and decreased in number, and displayed abnormal dendritic trees and fragmented, disorganized axons. Electron microscopy revealed mitochondrial abnormalities in skeletal and cardiac muscle and also in the Purkinje cells. Deletions of the mitochondrial DNA were detected in the muscle in heteroplasmic form (up to 7%). Mainly the ND4-ND4L region was affected, as evidenced by the PCR; however, other regions of the mitochondrial genome also showed deletions of varying size and extent, suggesting multiple deletions of the mitochondrial DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bieber LL (1988) Carnitine. Annu Rev Biochem 57: 261–263.

    PubMed  Google Scholar 

  • Corral–Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. JAMA 266: 1812–1816.

    PubMed  Google Scholar 

  • Clay VJ, Ragan CI (1998) Evidence for existence of tissue specific isoenzymes of mitochondrial NADH dehydrogenase. Biochem Biophys Res Commun 157: 1423–1428.

    Google Scholar 

  • DiDonato S, Rimoldi M, Bertagnoglio B, Uziel G (1979) Fatal ataxic encephalopathy and carnitine acetyltransferase deficiency: a functional defect of pyruvate oxidation? Neurology 29: 1578–1583.

    PubMed  Google Scholar 

  • Holt IJ, Harding AE, Morgan–Hughes JA (1989) Deletion of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms. Nucleic Acid Res 17: 4465–4469.

    PubMed  Google Scholar 

  • Kispal G, Sumegi B, Dietmayer K, et al (1993) Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. J Biol Chem 268: 1824–1829.

    PubMed  Google Scholar 

  • Larsson NG, Clayton DA (1995) Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet 29: 151–178.

    PubMed  Google Scholar 

  • Melegh B, Sumegi B, Sherry DA (1993) Preferential elimination of pivalate with supplemental carnitine via formation of pivaloylcarnitine in man. Xenobiotica 23: 1255–1261.

    PubMed  Google Scholar 

  • Melegh B, Bock I, Gáti I, Méhes K (1996) Multiple mitochondrial DNA deletions and persistent hyperthermia in a patient with Brachmann–De Lange phenotype. Am J Med Genet 65: 82–88.

    PubMed  Google Scholar 

  • Munnich A, Rff</del>ötig A, Chretien D, et al (1996) Clinical presentation of mitochondrial disorders in childhood. J Inher Metab Dis 19: 521–527.

    PubMed  Google Scholar 

  • Ozawa T, Hayakawa M, Katsumata K, Yoneda M, Ikebe S, Mizuno Y (1997) Fragile mitochondrial DNA: the missing link in the apoptotic neuronal cell death in ParkinsonÏs disease. Biochem Biophys Res Commun 235: 158–161.

    PubMed  Google Scholar 

  • Palva TK, Palva ET (1985) Rapid isolation of animal mitochondrial DNA by alkaline extraction. FEBS Lett 192: 267–270.

    PubMed  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467.

    PubMed  Google Scholar 

  • Robinson JB, Brent LG, Sumegi B, Srere PA (1987) Enzymatic approach to the study of the Krebs tricarboxylic acid cycle. In Darley–Usmar VM, Rickwood D, Wilson MT, eds. Mitochondria: A Practical Approach. Oxford: ILR Press, 153–170.

    Google Scholar 

  • Rötig AM, Cormier V, Blanche S, et al (1990) Pearson's marrow–pancreas syndrome. J Clin Invest 86: 1601–1608.

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santorelli FM, Seiacco M, Tanji K, et al (1996) Multiple mitochondrial DNA deletions in sporadic inclusion body myositis: a study of 56 patients. Ann Neurol 6: 789–795.

    Google Scholar 

  • Seress L, Mrzljak L (1992) Postnatal development of mossy cells in the human dentate gyrus: a light microscopic Golgi study. Hippocampus 2: 127–142.

    PubMed  Google Scholar 

  • Seress L, Gulyás AI, Ferrer I, Tunon T, Soriano E, Freund TF (1993) Distribution, morphologic features and synaptic connections of Parvalbumin and Calbindin D28K–immunorective neurons in the human hippocampal formation. J Comp Neurol 337: 208–230.

    PubMed  Google Scholar 

  • Shoffner JM, Lott MT, Lezza AMS, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged–red fiber disease MERRF is associated with a mitochondrial DNA tRNAlys mutation. Cell 61: 931–937.

    PubMed  Google Scholar 

  • Stumpf DA, Parker WD, Angelini C (1985) Carnitine deÐciency, organic acidemias and Reye's syndrome. Neurology 35: 1041–1045.

    PubMed  Google Scholar 

  • Sumegi B, Melegh B, Adamovich K, Trombitás K (1990) Cytochrome oxidase deficiency a.ecting the structure of the myofibre and the shape of mitochondrial cristae membrane. Clin Chim Acta 19: 29–18.

    Google Scholar 

  • Wallace DC (1987) Maternal genes: mitochondrial diseases. Birth Defects 23: 137–190.

    PubMed  Google Scholar 

  • Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61: 1175–1212.

    PubMed  Google Scholar 

  • Wallace DC (1993) Mitochondrial diseases: genotype versus phenotype. Trends Genet 9: 128–132.

    PubMed  Google Scholar 

  • Yakes FM, van Houten B (1997) Mitochondrial damage is more extensive and persists longer than DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514–519.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melegh, B., Seress, L., Bedekovics, T. et al. Muscle carnitine acetyltransferase and carnitine deficiency in a case of mitochondrial encephalomyopathy. J Inherit Metab Dis 22, 827–838 (1999). https://doi.org/10.1023/A:1005562209034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005562209034

Keywords

Navigation