Skip to main content

A Green Planet Versus a Desert World: Estimating the Maximum Effect of Vegetation on the Land Surface Climate

Abstract

We quantify the maximum possible influence of vegetation on the global climate by conducting two extreme climate model simulations: in a first simulation (‘desert world’), values representative of a desert are used for the land surface parameters for all non glaciated land regions. At the other extreme, a second simulation is performed (‘green planet’) in which values are used which are most beneficial for the biosphere's productivity. Land surface evapotranspiration more than triples in the presence of the ‘green planet’, land precipitation doubles (as a second order effect) and near surface temperatures are lower by as much as 8 K in the seasonal mean resulting from the increase in latent heat flux. The differences can be understood in terms of more absorbed radiation at the surface and increased recycling of water. Most of the increase in net surface radiation originates from less thermal radiative loss and not from increases in solar radiation which would be expected from the albedo change. To illustrate the differences in climatic character and what it would imply for the vegetation type, we use the Köppen climate classification. Both cases lead to similar classifications in the extra tropics and South America indicating that the character of the climate is not substantially altered in these regions. Fundamental changes occur over Africa, South Asia and Australia, where large regions are classified as arid (grassland/desert) climate in the ‘desert world’ simulation while classified as a forest climate in the ‘green planet’ simulation as a result of the strong influence of maximum vegetation on the climate. This implies that these regions are especially sensitive to biosphere-atmosphere interaction.

This is a preview of subscription content, access via your institution.

References

  1. Batjes, N. H.: 1996, ‘Development of a World Data Set of Soil Water Retention Properties Using Pedotransfer Rules, Geoderma 71, 31-52.

    Google Scholar 

  2. Bonan, G. B., Pollard D., and Thompson S. L.: 1992, ‘Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716-718.

    Google Scholar 

  3. Budyko, M. I.: 1974, Climate and Life, Academic Press, New York, p. 508.

  4. Charney, J. G.: 1975, ‘Dynamics of Deserts and Drought in the Sahel’, Quart. J. Roy. Meteorol. Soc. 101, 193-202.

    Google Scholar 

  5. Claussen, M.: 1994, ‘On Coupling Global Biome Models with Climate Models’, Clim. Res. 4, 203-221.

    Google Scholar 

  6. Claussen, M., Lohmann U., Roeckner E., and Schulzweida, U.: 1994, ‘A Global Data Set of Land Surface Parameters’, Report 135, Max-Planck-Institut für Meteorologie, Hamburg.

    Google Scholar 

  7. Claussen, M.: 1998, ‘On Multiple Solutions of the Atmosphere-Vegetation System in Present-Day Climate’, Global Change Biol. 4, 549-559.

    Google Scholar 

  8. Dümenil, L. and Todini E.: 1992, ‘A Rainfall-Runoff Scheme for Use in the Hamburg Climate Model’, in Kane, J. (ed.), Advances in Theoretical Hydrology-a Tribute to James Dooge, Elseviers Science Publishers, Amsterdam, pp. 129-157.

    Google Scholar 

  9. Eltahir, E. A. B.: 1998. ‘A Soil Moisture-Rainfall Feedback Mechanism. 1. Theory and Observations’, Water Resour. Res. 34, 765-776.

    Google Scholar 

  10. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: 1996, ‘An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics’, Global Biogeochem. Cycles 10, 603-628.

    Google Scholar 

  11. Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., Fiorino, M., Glecker, P. J., Hnilo, J. J., Marlais, S. M., Phillips, T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E., and Williams, D. N.: 1999, ‘An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I)’, Bull. Amer. Meteorol. Soc. 80, 29-56.

    Google Scholar 

  12. Gutman, G., Ohring, G., and Joseph, J. H.: 1984, ‘Interaction between the Geobotanic State and Climate: A Suggested Approach and a Test with a Zonal Model’, J. Atmos. Sci. 41, 2663-2678.

    Google Scholar 

  13. Henderson-Sellers, A.: 1993. ‘Continental Vegetation as a Dynamic Component of a Global Climate Model: A Preliminary Assessment’, Clim. Change 23, 337-377.

    Google Scholar 

  14. Holdridge, L. R.: 1947, ‘Determination of World Plant Formations from Simple Climatic Data’, Science 105, 367-368.

    Google Scholar 

  15. Kleidon, A. and Heimann M.: 1998a, ‘A Method of Determining Rooting Depth from a Terrestrial Biosphere Model and Its Impacts on the Global Water-and Carbon Cycle’, Global Change Biol. 4, 275-286.

    Google Scholar 

  16. Kleidon, A. and Heimann M.: 1998b, ‘Optimised Rooting Depth and its Impacts on the Simulated Climate of an Atmospheric General Circulation Model’, Geophys. Res. Lett. 25, 345-348.

    Google Scholar 

  17. Köppen, W.: 1923, Die Klimate der Erde, Walter de Gruyter, Berlin.

    Google Scholar 

  18. Leemans, R. and Cramer, W.: 1991, ‘The IIASA Climate Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Terrestrial Grid’, RR-91-18, Institute of Applied Systems Analysis, Laxenburg/Austria.

    Google Scholar 

  19. Lohmann, U., Sausen, R., Bengtsson, L., Cubasch, U., Perlwitz, J., and Roeckner, E.: 1993, ‘The Köppen Climate Classification as a Diagnostic Tool for General Circulation Models. Clim. Res. 3, 177-193.

    Google Scholar 

  20. Milly, P. C. D. and Dunne K. A.: 1994, ‘Sensitivity of the Global Water Cycle to the Water-Holding Capacity of Land’, J. Clim. 7, 506-526.

    Google Scholar 

  21. Odum, E. P.: 1969, ‘The Strategy of Ecosystem Development’, Science 164, 262-270.

    Google Scholar 

  22. Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, Y., and Denning, S.: 1998, ‘Interactions Between the Atmosphere and Terrestrial Ecosystems: Influence on Weather and Climate’, Global Change Biol. 4, 461-475.

    Google Scholar 

  23. Prentice, I. C., Cramer, W., Harrison, S., Leemans, R., Monserud, R. A., and Solomon, A. M.: 1992. ‘A Global Biome Model Based on Plant Physiology and Dominance, Soil Properties and Climate’, J. Biogeogr. 19, 117-134.

    Google Scholar 

  24. Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.: 1996, ‘The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate’, Report 218, Max-Planck-Institut für Meteorologie, Hamburg.

    Google Scholar 

  25. Schlesinger, W. H.: 1997, Biogeochemistry. An Analysis of Global Change, Academic Press, San Diego, p. 588.

    Google Scholar 

  26. Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere Model (Sib) for Use within General Circulation Models’, J. Atmos. Sci. 43, 505-531.

    Google Scholar 

  27. Shukla, J. and Mintz, Y.: 1982, ‘The Influence of Land-Surface-Evapotranspiration on the Earth's Climate’, Science 247, 1322-1325.

    Google Scholar 

  28. Stendel, M. and Roeckner, E.: 1998, ‘Impacts of Horizontal Resolution on Simulated Climate Statistics in ECHAM 4’, Report 253, Max-Planck-Institut für Meteorologie, Hamburg.

    Google Scholar 

  29. Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: 1997, ‘Human Domination of Earth's Ecosystems’, Science 277, 494-499.

    Google Scholar 

  30. WBGU: 1998, World in Transition: Ways Towards Sustainable Management of Freshwater Resources, German Advisory Council on Global Change (WBGU), Springer Verlag, Berlin.

    Google Scholar 

  31. Wild, M., Ohmura, A., Gilgen, H., Roeckner, E., and Giorgetta, M.: 1996, ‘Improved Representation of Surface and Atmospheric Radiation Budgets in the ECHAM4 General Circulation Model’, Report 200, Max-Planck-Institut für Meteorologie, Hamburg.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kleidon, A., Fraedrich, K. & Heimann, M. A Green Planet Versus a Desert World: Estimating the Maximum Effect of Vegetation on the Land Surface Climate. Climatic Change 44, 471–493 (2000). https://doi.org/10.1023/A:1005559518889

Download citation

Keywords

  • Land Surface
  • Latent Heat Flux
  • Climate Model Simulation
  • Climate Classification
  • Land Surface Parameter