Skip to main content
Log in

Chloramphenicol and Ampicillin-Induced Changes in Rat Hepatic Esterase and Amidase Activities

  • Published:
Bioscience Reports

Abstract

The influence of ampicillin and chloramphenicol administered intraperitoneallysingly or in combination on the protein content and the activities of hepaticsterase and amidase have been investigated in rats. The results have beencompared to the effects of phenobarbitone (inducer) andp-nitrophenyl-phosphate (inhibitor) of hepatic hydrolases.

Ampicillin pretreatment reduced protein level and amidase activity by3.5% each but caused a significant increase (8.1%) in total esteraseactivity compared to controls. Chloramphenicol treatment caused an overalldecrease in protein level, esterase and amidase activities respectively by11%, 11%, and 35% over controls.

Combined administration of both drugs resulted in a decrease in protein,esterase and amidase activities by 11.5%, 12.5%, and 41.2% respectively,thus mimicking the effects obtained with chloramphenicol alone.

The changes induced by administration of the drugs particularly incombination on the constituent enzymes of rat hepatic hydrolases may affectthe ability of the body to deal with exposure to environmental chemicals ifextrapolated to man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Krisch, K. (1971) Carboxy ester hydrolases. In: The Enzymes (P. D. Boyer, edn.), 3rd ed., Vol. 5. Academic Press, New York, pp. 43–69.

    Google Scholar 

  2. Mentlein, R., Heiland, S., and Heymann, E. (1980) Arch. Biochem. Biophys. 200:547–559.

    PubMed  Google Scholar 

  3. Kaur, S., and Ali, B. (1982) Res. Comm. Chem. Pathol. Pharmacol. 38:343–344.

    Google Scholar 

  4. Satoh, T., and Moroi, K. (1973) Life Sci. 12:169–176.

    Google Scholar 

  5. Silver, E. H., and Murphy, S. D. (1981) Toxicol. Appl. Pharmacol. 57:208–219.

    PubMed  Google Scholar 

  6. Ali, B., and Kaur, S. (1982) Biochem. Pharmacol. 31:3683–3684.

    PubMed  Google Scholar 

  7. Annual Report of the Working Party on Pesticide Residues: 1994 (1995) MAFF & HSE. Supplement to the Pesticide Register. HMSO, London, pp. vii and 154.

    Google Scholar 

  8. Food and Chemical Toxicology (1996) Information Section: Pesticide Residues in Food 34:317–325.

    Google Scholar 

  9. McCracken, N. W., Blain, P. G., and Williams, F. M. (1993) Biochem. Pharmacol. 45:31–36.

    PubMed  Google Scholar 

  10. Nwankwo, J. O., Adebayo, J. A., and Emerole, G. O. (1996) Afr. J. Med. Med. Sci. 25:111–115.

    Google Scholar 

  11. Holt, D. E., Ryder, T. A., Fairbairn, A., Hurley, R., and Harvey, D. (1997) Human Exp. Toxicol. 116:570–576.

    Google Scholar 

  12. Holt, D. E., Andrews, C. M., Pyne, J. P., Williams, T. C., and Turton, J. A. (1998) Human Exp. Toxicol. 17:8–17.

    Google Scholar 

  13. Kaplan, S. L., and Feigin, R. D. (1983) Ped. Clin. North. Amer. 30:259–269.

    Google Scholar 

  14. Bradley, J. S., and Scheld, W. M. (1997) Clin. Infec. Disease 24:213–221.

    Google Scholar 

  15. Akpede, O., Abiodun, P. O., Sykes, M., and Salami, C. E. (1994) East Afr. Med. J. 71:14–20.

    PubMed  Google Scholar 

  16. Remmer, H., and Merker, H. J. (1963) Science 142:1657–1658.

    PubMed  Google Scholar 

  17. Trinder, P. (1954) Biochem. J. 57:301–303.

    PubMed  Google Scholar 

  18. Kaur, S., and Ali, B. (1983) Toxicol. Appl. Pharmacol. 70:156–159.

    PubMed  Google Scholar 

  19. Lowry, O. H., Rosenbrough, N. J., Farr, L., and Randall, R. J. (1951) J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  20. Rasoanaivo, P. et al. (1994) Planta Med. 60:13–16.

    PubMed  Google Scholar 

  21. Sowunmi, A. M., Oduola, A. M. J., Ogundahunsi, O. A. T., Falade, C. O., Gbotosho, G. O., and Salako, L. A. (1997) Trans. Roy. Soc. Trop. Med. Hyg. 91:63–67.

    PubMed  Google Scholar 

  22. Nwankwo, J. O., Garba, M. A., Chinje, C. E., Mgbojikwe, L. O., and Emerole, G. O. (1990) Biochem. Pharmacol. 40:654–659.

    PubMed  Google Scholar 

  23. Brandt, E., Hayman, E., and Mentlein, R. (1980) Biochem. Pharmacol. 29:1927–1931.

    PubMed  Google Scholar 

  24. Pohl, L. R., and Krishna, G. (1977) Biochem. Pharmacol. 27:335–341.

    Google Scholar 

  25. Siddiqui, M. K. J., and Walker, C. H. (1996) Pest. Sci. 48:141–148.

    Google Scholar 

  26. Conney, A. H., Davison, C., Gastel, R., and Burns, J. J. (1960) J. Pharmacol. Exp. Ther. 130:1–8.

  27. Howes, J. F., and Hunter, W. H. (1968) J. Pharm. Pharmacol. 20:107–110.

    PubMed  Google Scholar 

  28. Moroi, K., and Satoh, T. (1975) Biochem. Pharmacol. 24:1436–1437.

    Google Scholar 

  29. Conney, A. H., and Gilman, A. G. (1963) J. Biol. Chem. 238:3682–3689.

    PubMed  Google Scholar 

  30. Garrod, L. P., Lambert, H. P., O'Grady, F., and Waterworth, P. M. (1981) In: Antibiotics and Chemotherapy, 5th edn., Churchill Livingstone, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farombi, E.O., Nwankwo, J.O., Wara, S.H. et al. Chloramphenicol and Ampicillin-Induced Changes in Rat Hepatic Esterase and Amidase Activities. Biosci Rep 20, 13–19 (2000). https://doi.org/10.1023/A:1005527032317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005527032317

Navigation