Skip to main content
Log in

Subunit Organization of the Stator Part of the F 0 Complex from Escherichia coli ATP Synthase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalyticmechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potentialis supposed to propel rotation of a subunit c ring of F0 together with subunits γ and ∈ of F1,hereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complexfunctions as a stator for compensation of the torque generated during rotation. This reviewfocuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Usingepitope insertion and antibody binding, subunit a was shown to comprise six transmembranehelixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circulardichroism (CD) spectroscopy, the secondary structure of subunit b incorporated intoproteoliposomes was determined to be 80% α-helical together with 14% β turn conformation, providingflexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplexwas shown to be active in proton translocation and functional F1 binding revealing the nativeconformation of the polypeptide chain. Chemical crosslinking in everted membrane vesiclesled to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32Ccould be crosslinked to subunit a, indicating a close proximity of subunits a and b near themembrane. Further evidence for the proposed direct interaction between subunits a and b wasobtained by purification of a stable ab 2 subcomplex via affinity chromatography using Histags fused to subunit a or b. This ab 2 subcomplex was shown to be active in proton translocationand F1 binding, when coreconstituted with subunit c. Consequences of crosslink formationand subunit interaction within the F1F0 complex are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621–628.

    Google Scholar 

  • Altendorf, K, Stalz, W.-D., Greie, J.-C., and Deckers-Hebestreit, G. (2000). J. Exp. Biol. 203, 19–28.

    Google Scholar 

  • Aris, J. P. and Simoni, R. D. (1983). J. Biol. Chem. 258 , 14599–14609.

    Google Scholar 

  • Bjørbæk, C., Foërsom, V., and Michelsen, O. (1990). FEBS Lett. 260,31–34.

    Google Scholar 

  • Böttcher, B., Schwarz, L., and Gräber, P. (1998). J. Mol. Biol. 281, 757–762.

    Google Scholar 

  • Böttcher, B., Bertsche, I., Reuter, R., and Gräber, P. (2000). J. Mol. Biol. 296,449–457.

    Google Scholar 

  • Cherepanov, D. A., Mulkidjanian, A. Y, and Junge, W. (1999). FEBS Lett. 449, 1–6.

    Google Scholar 

  • Deckers-Hebestreit, G. and Altendorf, K. (1992). J. Exp. Biol. 172,451–459.

    Google Scholar 

  • Deckers-Hebestreit, G. and Altendorf, K (1996). Annu. Rev. Microbiol. 50,791–824.

    Google Scholar 

  • Deckers-Hebestreit, G., Greie, J.-C., Stalz, W.-D., and Altendorf, K (2000). Biochim. Biophys. Acta 1458, 364–373.

    Google Scholar 

  • Dmitriev, O. Y, Jones, P. C., Jiang, W., and Fillingame, R. H. (1999). J. Biol. Chem. 274, 15598–15604.

    Google Scholar 

  • Dunn, S. D. (1992). J. Biol. Chem. 267, 7630–7636.

    Google Scholar 

  • Dunn, S. D. and Chandler, J. (1998).J. Biol. Chem. 273, 8646–8651.

    Google Scholar 

  • Dunn, S. D., McLachlin, D. T., and Revington, M. (2000). Biochim. Biophys. Acta 1458, 356–363.

    Google Scholar 

  • Fillingame, R. H. (1990). In The Bacteria. A Treatise on Structure and Function, Vol. 12 (Krulwich, T. A., ed.), Academic Press, New York, pp. 345–391.

    Google Scholar 

  • Fillingame, R. H., Jiang, W., Dmitriev, O. Y, and Jones, P. C. (2000). Biochim. Biophys. Acta 1458, 387–403.

    Google Scholar 

  • Fraga, D. and Fillingame, R. H. (1991). J. Bacterial. 173 , 2639–2643.

    Google Scholar 

  • Fraga, D., Hermolin, J., Oldenburg, M., Miller, M. J., and Fillingame, R. H. (1994). J. BioI. Chem. 269, 7532–7537.

    Google Scholar 

  • Girvin, M. E., Rastogi, V. K, Abildgaard, F, Markley, J. L., and Fillingame, R. H. (1998). Biochemistry 37, 8817–8824.

    Google Scholar 

  • Gogol, E. P., Lücken, U., and Capaldi, R. A. (1987). FEBS Lett. 219, 274–278.

    Google Scholar 

  • Greie, J.-C., Deckers-Hebestreit, G., and Altendorf, K. (2000). Eur. J. Biochem. 267, 3040–3048.

    Google Scholar 

  • Hermolin, J., Gallant, J., and Fillingame, R. H. (1983). J. BioI. Chem. 258, 14550–14555.

    Google Scholar 

  • Hermolin, J., Dmitriev, O. Y, Zhang, Y, and Fillingame, R. H. (1999). J. BioI. Chem. 274, 17011–17016.

    Google Scholar 

  • Jäger, H., Birkenhäger, R., Stalz, W.-D., Altendorf, K, and Deckers-Hebestreit, G. (1998). Eur. J. Biochem. 251, 122–132.

    Google Scholar 

  • Jiang, W and Fillingame, R. H. (1998). Proc. Natl. Acad. Sci. USA 95, 6607–6612.

    Google Scholar 

  • Jones, P. C., Hermolin, J., Jiang, W., and Fillingame, R. H. (2000). J. Biol. Chem. 275, 31340–31346.

    Google Scholar 

  • Junge, W (1999). Proc. Natl. Acad. Sci. USA 96, 4735–4737.

    Google Scholar 

  • Kumamoto, C. A. and Simoni, R. D. (1986). J. Biol. Chem. 261 , 10037–10042.

    Google Scholar 

  • Lewis, M. J., Chang, J. A., and Simoni, R. D. (1990). J. Biol. Chem. 265, 10541–10550.

    Google Scholar 

  • Lill, H., Hensel, F, Junge, W, and Engelbrecht, S. (1996). J. Biol. Chem. 271, 32737–32742.

    Google Scholar 

  • Long, J. C., Wang, S., and Vik, S. B. (1998). J. Biol. Chem. 273 , 16235–16240.

    Google Scholar 

  • McLachlin, D. T. and Dunn, S. D. (1997). J. Biol. Chem. 272 , 21233–21239.

    Google Scholar 

  • McLachlin, D. T. and Dunn, S. D. (2000). Biochemistry 39 , 3486–3490.

    Google Scholar 

  • McLachlin, D. T., Bestard, J. A., and Dunn, S. D. (1998). J. Biol. Chem. 273, 15162–15168.

    Google Scholar 

  • McLachlin, D. T., Coveny, A. M., Clark, S. M., and Dunn, S. D. (2000). J. Biol. Chem. 275, 17571–17577.

    Google Scholar 

  • Masaike, T., Mitome, N., Noji, H., Muneyuki, E., Yasuda, R., Kinosita, K., Jr., and Yoshida, M. (2000). J. Exp. Biol. 203, 1–8.

    Google Scholar 

  • Meunier, B. and Rich, P. R. (1998). J.Mol. Biol. 283,727–730.

    Google Scholar 

  • Miller, M. J., Fraga, D., Paule, C. R., and Fillingame, R. H. (1989). J. Biol. Chem. 264, 305–311.

    Google Scholar 

  • Mosher, M. E., White, L. K, Hermolin, J., and Fillingame, R. H. (1985). J. Biol. Chem. 260, 4807–4814.

    Google Scholar 

  • Nakamoto, R. K, Ketchum, C. J., and Al-Shawi, M. K (1999). Annu. Rev. Biophys. Biomol. Struct. 28, 205–234.

    Google Scholar 

  • Ogilvie, I., Aggeler, R., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 16652–16656.

    Google Scholar 

  • Pänke, O., Gumbiowski, K., Junge, W., and Engelbrecht, S. (2000). FEBS Lett. 472, 34–38.

    Google Scholar 

  • Patterson, A. R., Wada, T., and Vik, S. B. (1999). Arch. Biochem. Biophys. 368, 193–197.

    Google Scholar 

  • Rastogi, V. K. and Girvin, M. E. (1999). Nature (London) 402 , 263–268.

    Google Scholar 

  • Rodgers, A. J. W and Capaldi, R. A. (1998). J. Biol. Chem. 273 , 29406–29410.

    Google Scholar 

  • Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997). J. Biol. Chem. 272 , 31058–31064.

    Google Scholar 

  • Sambongi, Y, Iko, Y, Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y, and Futai, M. (1999). Science 286, 1722–1724.

    Google Scholar 

  • Schneider, E. and Altendorf, K (1984). Proc. Natl. Acad. Sci. USA 81,7279–7283.

    Google Scholar 

  • Schneider, E. and Altendorf, K. (1985). EMBO J. 4, 515–518.

    Google Scholar 

  • Schulenberg, B., Wellmer, F, Lill, H., Junge, W., and Engelbrecht, S. (1997). Eur. J. Biochem. 249, 134–14l.

    Google Scholar 

  • Schulenberg, B., Aggeler, R., Murray, J., and Capaldi, R. A. (1999). J. Biol. Chem. 274, 34233–34237.

    Google Scholar 

  • Senior, A. E. (1983). Biochim. Biophys. Acta 726, 81–95.

    Google Scholar 

  • Sorgen, P. L., Bubb, M. R., McCormick, K A., Edison, A. S., and Cain, B. D. (1998a) Biochemistry 37, 923–932.

    Google Scholar 

  • Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998b). J. Biol. Chem. 273, 27873–27878.

    Google Scholar 

  • Steffens, K, Schneider, E., Deckers-Hebestreit, G., and Altendorf, K (1987). J. Biol. Chem. 262, 5866–5869.

    Google Scholar 

  • Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700–1705.

    Google Scholar 

  • Takeyama, M., Noumi, T., Maeda, M., and Futai, M. (1988). J. Biol. Chem. 263, 16106–16112.

    Google Scholar 

  • Tang, C. and Capaldi, R. A. (1996). J. Biol. Chem. 271, 3018–3024.

    Google Scholar 

  • Uhlin, U., Cox, G. B., and Guss, J. M. (1997). Structure 5 , 1219–1230.

    Google Scholar 

  • Valiyaveetil, F. I. and Fillingame, R. H. (1998). J. Biol. Chem. 273, 16241–16247.

    Google Scholar 

  • Wada, T., Long, J. C., Zhang, D., and Vik, S. B. (1999). J. Biol. Chem. 274, 17353–17357.

    Google Scholar 

  • Walker, J. E., Saraste, M., and Gay, N. J. (1982). Nature (London) 298, 867–869.

    Google Scholar 

  • Wang, H. and Oster, G. (1998). Nature (London) 396, 279–282.

    Google Scholar 

  • Watts, S. D., Tang, C., and Capaldi, R. A. (1996). J. Biol. Chem. 271, 28341–28347.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998). Nature (London) 393, 29.

    Google Scholar 

  • Wilkens, S., Dahlquist, F W., McIntosh, L. P., Donaldson, L. W., and Capaldi, R. A. (1995). Natur. Struct. Biol. 2, 961–967.

    Google Scholar 

  • Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, E W., and Capaldi, R. A. (1997). Natur. Struct. Biol. 4, 198–20l.

    Google Scholar 

  • Wilkens, S., Zhou, J., Nakayama, R., Dunn, S. D., and Capaldi, R. A. (2000). J. Mol. Biol. 295, 387–39l.

    Google Scholar 

  • Yamada, H., Moriyama, Y., Maeda, M., and Futai, M. (1996). FEBS Lett. 390, 34–38.

    Google Scholar 

  • Yasuda, R., Noji, H., Kinosita, K, Jr., and Yoshida, M. (1998). Cell 93, 1117–1124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greie, JC., Deckers-Hebestreit, G. & Altendorf, K. Subunit Organization of the Stator Part of the F 0 Complex from Escherichia coli ATP Synthase . J Bioenerg Biomembr 32, 357–364 (2000). https://doi.org/10.1023/A:1005523902800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005523902800

Navigation