Skip to main content
Log in

Chemistry of Leichhardt's Grasshopper, Petasida ephippigera, and its Host Plants, Pityrodia jamesii, P. ternifolia, and P. pungens

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Investigation of the strikingly aposematic Leichhardt's grasshopper revealed a number of host-plant-derived components. Chemical study of the three known host plants revealed a diverse array of components. Pityrodia ternifolia and P. pungens contain predominantly sesquiterpenes and sesquiterpene glycosides and P. jamesii is rich in cineole, dihydrochalcones, chalcones, and monoterpene glycosides. Feces from grasshoppers feeding on P. jamesii contain a mixture of hydroxycineoles, of which 3α-hydroxycineole is the predominant isomer (68%). No evidence for previously suspected "alkaloidal" toxins was found in either the insect or host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bull, S. D., Carman, R. M., Carrick, F. N., and Klika, K. D. 1993. 7-Hydroxy-1,8-cineole and 7-cineolic acid. Two new possum urinary metabolites. Aust. J. Chem. 46:441-447.

    Google Scholar 

  • Calaby, J. H., and Key, K. H. L. 1973. Rediscovery of the spectacular Australian grasshopper Petasida ephippigera White (Orthoptera: Pyrgomorphidae). J. Aust. Entomol. Soc. 12:161-164.

    Google Scholar 

  • Carman, R. M., and Klika, K. D. 1992. Partially racemic compounds as bushtail possum urinary metabolites. Aust. J. Chem. 45:651-657.

    Google Scholar 

  • Carman, R. M., Macrae, I. C., and Perkins, M. V. 1986. The oxidation of 1,8-cineole by Pseudomonas flava. Aust. J. Chem. 39:1739-1746.

    Google Scholar 

  • Carman, R. M., Garner, A. C., and Klika, K. D. 1994. 2,9-Dihydroxy-and 2,10-dihydroxy-1,8-cineole. Two new possum urinary metabolites. Aust. J. Chem. 47:1509-1521.

    Google Scholar 

  • Faure, R., Ramanoelina, A. R. P., Rakotonirainy, O., Bianchini, J.-P., and Gaydou, E. M. 1991. Two-dimensional nuclear magnetic resonance of sesquiterpenes. 4. Application to complete assignment of 1H and 13C NMR spectra of some aromadendrane derivatives. Magn. Reson. Chem. 29:969-971.

    Google Scholar 

  • Flynn, T. M., and Southwell, I. A. 1979. 1,3-Dimethyl-2-oxabicyclo[2.2.2]octane-3-methanol and 1,3-dimethyl-2-oxabicyclo[2.2.2]octane-3-carboxylic acid, urinary metabolites of 1,8-cineole. Aust. J. Chem. 32:2093-2095.

    Google Scholar 

  • Ghisalberti, E., Jefferies, P. R., Raston, C. L., Toia, R. F., and White, A. H. 1981. A diterpene from Pityrodia lepidota. 34:1009-1015.

    Google Scholar 

  • Greenslade, P., and Lowe, L. 1998. Leichhardt's grasshopper. Nature Aust. 25(12):20-21.

    Google Scholar 

  • Greenaway, W., and Whatley, F. R. 1990. Resolution of complex mixtures of phenolics in popular bud exudate by analysis of gas chromatography-mass spectrometry data. J. Chromatogr. 519:145-158.

    Google Scholar 

  • Greenaway, W., May, J., and Whatley, F. R. 1989. Flavanoid aglycones identified by gas chromatography-mass spectrometry in bud exudate of Populus balsamifera. J. Chromatogr. 472:393-400.

    Google Scholar 

  • Harada, A., Sakata, K., and Ina K. 1984. A new screening method for antifouling substances using the blue mussel, Mytilus edulis L. Agric. Biol. Chem. 48:641-644.

    Google Scholar 

  • Harborne, J. B., and Stacey, C. I. 1978. A new flavone glycoside from the leaves of Pityrodia coerulea. Phytochemistry 17:588-589.

    Google Scholar 

  • Hufford, C. D., and Oguntimein, B. O. 1980. Dihydrochalcones from Uvaria angolensis. Phytochemistry 19:2036-2038.

    Google Scholar 

  • Jakupovic, J., Grenz, M., Bohlmann, F., Rustaiyan, A., and Koussari, S. 1988. Sesquiterpene glycosides from Calendula persica. Planta Med. 54:254-256.

    Google Scholar 

  • Key, K. H. L. 1985. Monograph of the Monistriini and Petasidini (Orthoptera: Pyrgomorphidae). Aust. J. Zool. Suppl. Ser. 107:1-213.

    Google Scholar 

  • Liu, W. G., and Rosazza, J. P. N. 1990. Stereospecific hydroxylation of 1,8-cineole using a microbial biocatalyst. Tetrahedron Lett. 31:2833-2836.

    Google Scholar 

  • Lowe, L. 1995. Preliminary investigations of the biology and management of Leichhardt's grasshopper, Petasida ephippigera White. J. Orthopt. Res. 4:219-221.

    Google Scholar 

  • Macrae, I. C., Alberts, V., Carman, R. M., and Shaw, I. M. 1979. Products of 1,8-cineole oxidation by a pseudomonad. Aust. J. Chem. 32:917-922.

    Google Scholar 

  • Miyazawa, M., Kameoka, H., Morinaga, K., Negoro, K., and Mura, N. 1989. Hydroxycineole: Four new metabolites of 1,8-cineole in rabbits. J. Agric. Food Chem. 37:222-226.

    Google Scholar 

  • Miyazawa, M., Nakaoka, H., Hyakamachi, M., and Kameoka, H. 1991. Biotransformation of 1,8-cineole to (+)-2-endo-hydroxy-1,8-cineole by Glomerella cinqulata. Chem. Express 6:667-670.

    Google Scholar 

  • Munir, A. A. 1979. A taxonomic revision of the genus Pityrodia (Chloanthacae). J. Adelaide Bot. Gard. 2:1-138.

    Google Scholar 

  • Nishimura, H., Noma, Y., and Mizutani, J. 1982. Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole. Agric. Biol. Chem. 46:2601-2604.

    Google Scholar 

  • Overend, W. G. 1972. Glycosides, p. 310, in W. Pigman, W. and D. Horton (eds.). The Carbohydrates. Chemistry and Biochemistry, Volume 1A. Academic Press, New York.

    Google Scholar 

  • Pozsgay, V., and NeszmÉlyi, A. 1980. Carbon-13 n.m.r.-spectral study of L-rhamnose acetates. Carbohydr. Res. 80:196-202.

    Google Scholar 

  • Rentz, D. C. F. 1996. Grasshopper Country: The Abundant Orthopteroid Insects of Australia University of New South Wales Press, Sydney.

  • Southwell, I. A., Flynn, T. M., and Degabriele, R. 1980. Metabolism of α-and β-pinene, pcymene and 1,8-cineole in the bushtail possum, Trichosurus vulpecula. Xenobiotica 10:17-23.

    Google Scholar 

  • Southwell, I. A., Maddox, C. D. A., and Zalucki, M. P. 1995. Metabolism of 1,8-cineole in tea tree (Melaleuca alternifolia and M. linariifolia) by pyrgo beetle (Paropsisterna tigrina). J. Chem. Ecol. 21:439-453.

    Google Scholar 

  • Takaoka, D., Kawahara, H., Ochi, S., Hiroi, M., Nozaki, H., Nakayama, M., Ishizaki, K., Sakata, K., and Ina, K. 1986. The structures of sesquiterpene glycosides from Pittosporum tobira Ait. Chem. Lett. 1986:1121-1124.

    Google Scholar 

  • Wagner, H., Chari, V. M., and Sonnenbichler, J. 1976. 13C-NMR-Spektren Natürlich Vorkommender Flavonoide. Terahedron Lett. 1976:1799-1802.

    Google Scholar 

  • Whitman, D. W. 1990. Grasshopper Chemical Communication, pp. 357-391, in R. F. Chapmann and A. Joern (eds.). Biology of Grasshoppers. John Wiley & Sons, New York.

    Google Scholar 

  • Williams, A. H. 1961. Dihydrochalcones of Malus species. J. Chem. Soc. 1961:4133.

    Google Scholar 

  • Williams, D. R., Trudgill, P. W., and Taylor, D. G. 1989. Metabolism of 1,8-cineole by a Rhodococcus species: Ring cleavage reactions. J. Gen. Microbiol. 135:1957-1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, M.T., Lowe, L.M., Kitching, W. et al. Chemistry of Leichhardt's Grasshopper, Petasida ephippigera, and its Host Plants, Pityrodia jamesii, P. ternifolia, and P. pungens. J Chem Ecol 26, 2275–2290 (2000). https://doi.org/10.1023/A:1005518625764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005518625764

Navigation