Identifying Key Sources of Uncertainty in Climate Change Projections

Abstract

What sources of uncertainty shouldbe included in climate change projections and whatgains can be made if specific sources of uncertaintyare reduced through improved research?DIALOGUE, anintegrated assessment model, has been used to answerthese questions. Central in the approach of DIALOGUEis the concept of parallel modeling, i.e., for eachstep in the chain from emissions to climate change anumber of equivalent models areimplemented. The followingconclusions are drawn:The key source of uncertainty in global temperatureprojections appears to be the uncertainty inradiative forcing models. Within this group ofmodels uncertainty within aerosol forcing models isabout equal to the total forcing of greenhouse gasmodels. In the latter group CO2 is dominant.The least important source of uncertainty appears tobe the gas cycle models. Within this group of modelsthe role of carbon cycle models is dominant.Uncertainty in global temperature projections hasnot been treated consistently in the literature.First, uncertainty should be calculated as a productof all uncertainty sources. Second, aparticular choice of a base year for global warmingcalculations influences the ranking of uncertainty.Because of this, a comparison of ranking resultsacross different studies is hampered. We argue that`pre-Industrial' is the best choice for studies onuncertainty.There is a linear relationship between maximumuncertainty in the year 2100 and cumulativeemissions of CO2 over the period 1990–2100:higher emissions lead to more uncertainty.

This is a preview of subscription content, access via your institution.

References

  1. Alcamo, J. (ed.): 1994, IMAGE 2.0, Integrated Modeling of Global Climate Change, Kluwer Academic Publishers, Dordrecht, p. 320.

    Google Scholar 

  2. Alcamo, J. et al: 1995, ‘An Evaluation of the IPCC IS92 Emission Scenarios’, in Houghton, J. T. et al. (eds.), Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, pp. 247–304.

  3. Chuang, C. C., Penner, J. E., Taylor, K. E., and Walton, J. J.: 1994, ‘Climate Effects of Anthropogenic Sulfate: Simulations from a Coupled Chemistry, Climate Model’, Preprints of the Conference on Atmospheric Chemistry, Nashville, Tennessee, American Meteorological Society, Boston, U.S.A., pp. 170–174.

    Google Scholar 

  4. Dowlatabadi, H. and Morgan, M. G.: 1993, ‘Integrated Assessment of Climate Change’, Science 259, 1813, 1932.

    Google Scholar 

  5. Dowlatabadi, H. and Kandlikar, M.: 1995, Key Uncertainties in Climate Change Policy: Results from ICAM-2, The 6th Global Warming Conference, San Francisco.

  6. Enting, I. G., Wigley, T. M. L., and Heimann, M.: 1994, Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses, CSIRO Technical Paper 31, p. 120.

  7. Haan, B. J. de et al.: 1994, ‘An Atmosphere-Ocean Model for Integrated Assessment of Global Change’, in Alcamo, J. (ed.), IMAGE 2.0, Integrated Modeling of Global Climate Change, Kluwer Academic Publishers, Dordrecht, pp. 283–318.

    Google Scholar 

  8. Hansen, J. E., Sato, M., Lacis, A., Ruedy, R., Tegen, I., and Matthews, E.: 1998, Climate Forcings in the Industrial Era, Proc. Natl. Acad. Sci. U.S.A., 95, pp. 12753–12758.

    Google Scholar 

  9. Hart, T. L., McAveny, B. J., Forgan, B. W., and McGregor, J. L.: 1990, ‘Atmospheric General Circulation Simulations with the BMRC Global Spectral Model: the Impact of Revised Physical Parametrizations’, J. Climate 3, 436–459.

    Google Scholar 

  10. Henderson-Sellers, A., Dickinson, R. E., Durbridge, T. B., Kennedy, P. J., McGuffie, K., and Pitman, A. J.: 1993, ‘Tropical Deforestation: Modeling Local to Regional-Scale Climate Change’, J. Geophys. Res. 98 (D4), 7289–7315.

    Google Scholar 

  11. Hoekstra, J.: 1994, Temperature and Precipitation Change in DIALOGUE, Box-Upwelling-Diffusion Model and Regional Interpretation, KEMA Report 63940-KES/MLU 94–3220, p. 29.

  12. Hoffert, M. I. and Flannery, B. P.: 1985, ‘Model Projections of the Time Dependent Response to Increasing Carbondioxide’, in McCracken, M. C. and Luther, F. M. (eds.), Projecting the Climate Effects of Increasing Carbondioxide, U.S. Department of Energy, Washington D.C.

    Google Scholar 

  13. Hulme, M. and Raper, S. C. B.: 1995, ‘An Integrated Framework to Address Climate Change (ESCAPE) and Further Developments of the Global and Regional Climate Modules (MAGICC)’, Energy Policy 23 (4/5), 347–355.

    Google Scholar 

  14. IPCC: 1990, Jenkins, G. J. and Ephraums, J. J. (eds.), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 365.

    Google Scholar 

  15. IPCC: 1992, Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, p. 200.

    Google Scholar 

  16. IPCC: 1994, Houghton, J. T., Meira Filho, L. G., Bruce, J., Hoesung Lee, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge University Press, Cambridge, p. 339.

    Google Scholar 

  17. IPCC: 1996, Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, p. 572.

    Google Scholar 

  18. IPCC: 1997, Houghton, J. T., Meira Filho, L. G., Griggs, and Maskell, K. (eds.), An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report, IPCC Technical Paper II, p. 51.

  19. Johansson, T. B., Kelly, H., Reddy, A. K. N., Williams, R. H., and Burnham, L. (eds.): 1993, Renewable Energy: Sources for Fuels and Electricity, Island Press, Washington, p. 1160.

    Google Scholar 

  20. Joos, F. et al.: 1996, ‘An Efficient and Accurate Representation of Complex Oceanic and Biospheric Models of Anthropogenic Carbon Uptake’, Tellus 48B (3), 397–417.

    Google Scholar 

  21. Kacholia, K. and Reck, R. A.: 1997, ‘Comparison of Global Climate Change Simulations for 2 × CO2-Induced Warming’, Clim. Change 35, 53–69.

    Google Scholar 

  22. Kassler: 1994, Energy for Development, SHELL selected paper.

  23. Krol, M. S. and Van der Woerd, H. J.: 1994, ‘Atmospheric Composition for Evaluation of Climate’, in Alcamo, J. (ed.), IMAGE 2.0, Integrated Modeling of Global Climate Change, Kluwer Academic Publishers, Dordrecht, pp. 259–281.

    Google Scholar 

  24. Lazarus M. et al.: 1993, Towards a Fossil Free Future: The Next Energy Transition. A Technical Analysis for Greenpeace International, Stockholm Environment Institute, Boston, p. 239.

    Google Scholar 

  25. Leggett, J. et al.: 1992, ‘Emissions Scenarios for the IPCC:An Update’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 69–95.

    Google Scholar 

  26. Maier-Reimer, E. and Hasselman, K: 1987, ‘Transport and Storage of CO2 in the Ocean-an Inorganic Ocean-Circulation Carbon Cycle Model’, Clim. Dyn. 2, 63–90.

    Google Scholar 

  27. Moss, R. and Schneider, S.: 1996, ‘Characterizing and Communicating Scientific Uncertainty: Building on the IPCC Second Assessment’, in Hassol, S. J. and Katzenberger, J. (eds.), Elements of Change 1996, Session 2, Aspen Global Change Institute, Colorado, p. 136.

    Google Scholar 

  28. National Research Council: 1996, A Plan for Research Program on Aerosol Radiative Forcing and Climate Change, Panel on Aerosol Radiative Forcing and Climate Change, National Academic Press, Washington, D.C.

    Google Scholar 

  29. Oglesby, R. J. and Salzman, B.: 1990, ‘Sensitivity of the Equilibrium Surface Temperature of a GCM to Systematic Changes in Atmospheric Carbon Dioxide’, Geophys. Res. Lett. 17, 1089–1092.

    Google Scholar 

  30. Osborn, T. J. and Wigley, T. M. L.: 1994, ‘A Simple Model for Estimating Methane Concentration and Lifetime Variations’, Clim. Dyn. 9, 181–193.

    Google Scholar 

  31. Pan, W., Tatang, M. A., McRae, G. J., and Prinn, R. G.: 1997, ‘Uncertainty Analysis of Direct Radiative Forcing by Anthropogenic Sulfate Aerosols’, J. Geophys. Res. 102 (D18), 21915–21924.

    Google Scholar 

  32. Pan, W., Tatang, M. A., McRae, G. J., and Prinn, R. G.: 1998, ‘Uncertainty Analysis of Indirect Radiative Forcing by Anthropogenic Sulfate Aerosols’, J. Geophys. Res. 103 (D4), 3815–3823.

    Google Scholar 

  33. Parkinson, S. and Young, P.: 1998, ‘Uncertainty and Sensitivity in Global Carbon Cycle Modelling’, Clim. Res. 9, 157–174.

    Google Scholar 

  34. Pepper, W. et al.: 1992, Emission Scenarios for the IPCC. An Update. Assumptions, Methodology and Results, IPCC Draft Report, p. 115.

  35. Prather, M. and Spivakovsky, C. M.: 1990, ‘Tropospheric OH and the Lifetimes of Hydrochloro-fluorocarbons’, J. Geophys. Res. 95, 18723–18729.

    Google Scholar 

  36. Prinn, R. et al.: 1995, ‘Atmospheric Trends and Lifetime of Trichloroethane and Global Average Hydroxyl Radical Concentrations, Based on 1978–1994 ALE/GAGE Measurements’, Science 269, 187–192.

    Google Scholar 

  37. Rotmans, J.: 1990, IMAGE: An Integrated Model to Assess the Greenhouse Effect, Kluwer Academic Publishers, Dordrecht, p. 289.

    Google Scholar 

  38. Schneider, S. H.: 1997, ‘Integrated Assessment Modeling of Global Climate Change: Transparent Rational Tool for PolicyMaking or Opaque Screen Hiding Value-Laden Assumptions?’, Environ. Model. Assess. 2, 229–249.

    Google Scholar 

  39. Schwartz, S. E. and Andreae, M. O.: 1996, ‘Uncertainty in Climate Change Caused by Aerosols’, Science 272, 1121–1122.

    Google Scholar 

  40. Siegenthaler, U. and Joos, F.: 1992, ‘Use of a Simple Model for Studying Oceanic Tracer Distributions and the Global Carbon Cycle’, Tellus 44B, 186–207.

    Google Scholar 

  41. Tating, M. A., Pan, W., Prinn, R. G., and McRae, G. J.: 1997, ‘An Efficient Method for Parametric Uncertainty Analysis of Numerical Geophysical Models’, J. Geophys. Res. 102 (D18), 21925–21932.

    Google Scholar 

  42. Thomson, A. M., Stewart, R. W., Owens, M. A., and Herwehe, J. A.: 1989, ‘Sensitivity of Tropospheric Oxidants to Global Chemical and Climate Change’, Atmos. Environ. 23, 519–532.

    Google Scholar 

  43. Titus, J. G. and Narayanan, V.: 1995, The Probability of Sea Level Rise, EPA Report 230-R–95–008, p. 186.

  44. Titus, J. G. and Narayanan, V.: 1996, ‘The Risk of Sea Level Rise’, Clim. Change 33, 151–212.

    Google Scholar 

  45. Van Asselt, M. and Rotmans, J.: 1995, Uncertainty in Integrated Assessment Modelling: A Cultural Perspective Based Approach, GLOBO Report Series 9, RIVM, p. 71.

  46. Visser, H. and Folkert, R. J. M.: 1996, The Greenhouse Gas Global Models in DIALOGUE: An Update, KEMA Report 64541-KES/MLU 96–3208, p. 62.

  47. Wang, W. C., Dudek, M. D., and Lianf, X.: 1992, ‘Inadequacy of Effective CO2 as a Proxy to Assess the Greenhouse Effect of Other Radiative Gases’, Geophys. Res. Lett. 19, 1375–1378.

    Google Scholar 

  48. Wang, C., Prinn, R. G., and Sokolov, A.: 1998, ‘A Global Interactive Chemistry and Climate Model: Formulation and Testing’, J. Geophys. Res. 103 (D4), 3399–3417.

    Google Scholar 

  49. Washington, W. and Meehl, G.: 1992, ‘Greenhouse Sensitivity Experiments with Penetrative Cumulus Convection and Tropical Cirrus Albedo Effect’, Clim. Dyn. 8, 211–233.

    Google Scholar 

  50. WEC: 1993, Energy for Tomorrow's World: the Realities, the Real Options and the Agenda for Achievement.

  51. Wigley, T. M. L.: 1993, ‘Balancing the Carbon Budget. Implications for Projections of Future Carbon Dioxide Concentration Changes’, Tellus 45B, 409–425.

    Google Scholar 

  52. Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for Climate and Sea Level of Revised IPCC Emissions Scenarios’, Nature 357, 293–357.

    Google Scholar 

  53. WMO: 1992, Scientific Assessment of Ozone Depletion-1991, Global Ozone Research and Monitoring Project, Report 25.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Visser, H., Folkert, R.J.M., Hoekstra, J. et al. Identifying Key Sources of Uncertainty in Climate Change Projections. Climatic Change 45, 421–457 (2000). https://doi.org/10.1023/A:1005516020996

Download citation

Keywords

  • Climate Change
  • Linear Relationship
  • Good Choice
  • Carbon Cycle
  • Assessment Model