Skip to main content

Investigating the Mode of Action of Natural Phytotoxins

Abstract

The potential use of natural phytotoxins (including allelochemicals) to develop novel tools for weed management is enhanced by the elucidation of their modes of action. This approach has not been emphasized by the agrochemical industry, although the possibility of discovering new target sites may be promising, since natural products tend to have modes of action different from synthetic herbicides. The approach of testing a compound on all known herbicide molecular target sites for commercial herbicides and other potent phytotoxins is feasible. However, this would preclude the discovery of new mechanisms of action. Discovering new target sites requires more challenging holistic approaches, initiated with physiological and biochemical studies that use whole plant assays. Studying basic plant responses to a compound may yield important clues to the specific physiological processes affected by the compounds and uncover novel mechanisms of action.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Amagasa, T., Paul R. N., Heitholt, J. J., and Duke, S. O. 1994. Biological effects of cornexistin on Lemna pausicostata. Pestic. Biochem. Physiol. 49:37–52.

    Google Scholar 

  2. Armbruster, B. L., Molin, W. T., and Bugg, M. W. 1991. Effects of the herbicide dithiopyr on cell division in wheat root tips. Pestic. Biochem. Physiol. 39:110–120.

    Google Scholar 

  3. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15.

    Google Scholar 

  4. Bazaes, S., MontecinoS, L., Krautwurst, H., Goldie, H., Cardemil, E., and Jabalquinto, A. M. 1997. Identification of reactive conserved histidines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae. Biochim. Biophys. Acta 1337:166–174.

    Google Scholar 

  5. Dayan, F. E., Reddy, K. N., and Duke, S. O. 1999a. Structure-activity relationships of diphenyl ethers and other oxygen-bridged protoporphyrinogen oxidase inhibitors, pp. 141–161, in P. Böger and K. Wakabayashi (eds.). Peroxidizing Herbicides. Springer-Verlag, Berlin.

    Google Scholar 

  6. Dayan, F. E., HernÁndez, A., Allen, S. N., Moraes, R. M., Vroman, J. A., Avery, M. A., and Duke, S. O. 1999b. Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50:607–614.

    Google Scholar 

  7. Dayan, F. E., Watson, S. B., Galindo, J. C. G., HernÁ ndez, A., Dou, J., Mcchesney, J. D., and Duke, S. O. 1999c. Phytotoxicity of quassinoids: Physiological responses and structural requirements. Pestic. Biochem. Physiol. 65:15–24.

    Google Scholar 

  8. Dornbos, D. L., JR., and SPENCER, G. F. 1990. Natural products phytotoxicity: A bioassay suitable for small quantities of slightly water-soluble compounds. J. Chem. Ecol. 16:339–352.

    Google Scholar 

  9. Duke, S. O., and Kenyon, W. H. 1993. Peroxidizing activity determined by cellular leakage pp. 61–66, in P. Böger and G. Sandmann (eds.). Target Assays for Modern Herbicides and Related Phytotoxic Compounds, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  10. Duke, S. O., Vaughn, K. C., and Meeusen, R. L. 1984. Mitochondrial involvement in the mode of action of acifluorfen. Pestic. Biochem. Physiol. 21:368–376.

    Google Scholar 

  11. Duke, S. O., Abbas, H. K., Amagasa, T., and Tanaka, T. 1996. Phytotoxins of microbial origin with potential for use as herbicides pp. 82–113, in L. G. Copping (ed.). Crop Protection Agents from Nature, Natural Products and Analogues. Royal Society of Chemistry, Cambridge, U.K.

    Google Scholar 

  12. Duke, S. O., Dayan, F. E., HernÁndez, A., Duke, M. V., and Abbas, H. K. 1997. Natural products as leads for new herbicide modes of action. Proceedings, Brighton Crop Protection Conference Weeds 2:579–586.

    Google Scholar 

  13. Galindo, J. C. G., HernÁndez, A., Dayan, F. E., Tellez, M. R., MacÍas, F. A., Paul, R. N., and DUKE, S. O. 1999. Dehydrozaluzanin C, A natural sesquiterpenolide, causes rapid membrane plasma membrane leakage. Phytochemistry 52:805–813.

    Google Scholar 

  14. Giovanelli, J., Owens, L., and Mudd, S. 1971. Mechanisms of inhibition of β-cystathionase by rhizobitoxine. Biochim. Biophys. Acta 227:671–684.

    Google Scholar 

  15. Harrington, P. M., Singh, B. K., Szamosi, I. T., and Birk, J. H. 1995. Synthesis and herbicidal activity of cyperin. J. Agric. Food Chem. 43:804–808.

    Google Scholar 

  16. Henkel, T., Brunne, R. M., MÜller, H., and Reichel, F. 1999. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 38:643–647.

    Google Scholar 

  17. Hiscox, J. D., and Israelstam, G. F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332–1334.

    Google Scholar 

  18. Kidd, B. R., Stephen, N. H., and Duncan, H. J. 1982. The effect of asulam on purine biosynthesis. Plant Sci. Lett. 26:211–217.

    Google Scholar 

  19. Killmer, J., Widholm, J., and Slife, F. 1981. Reversal of glyphosate inhibition of carrot cell culture growth by glycolytic intermediates and organic and amino acids. Plant Physiol. 68:1299–1302.

    Google Scholar 

  20. Krause, G. H., and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313–349.

    Google Scholar 

  21. Lehnen, L. P., JR., and Vaughn, K. C. 1992. The herbicide sindone B disrupts spindle microtubule organizing centers. Pestic. Biochem. Physiol. 44:50–59.

    Google Scholar 

  22. Lehnen, L. P., Vaughan, M. A., and Vaughn, K. C. 1990. Terbutol affects spindle microtubule organizing centres. J. Exp. Bot. 226:537–546.

    Google Scholar 

  23. Lydon, J., and Duke, S. O. 1999. Inhibitors of glutamine biosynthesis, pp. 445–464, in B. K. Singh (ed.). Plant Amino Acids. Marcel Dekker, New York.

    Google Scholar 

  24. Mori, I. R., Fonne-Pfister, R., and MATSUNAGA, S. 1995. A novel class of herbicide: Specific inhibitors of imidazoleglycerol phosphate dehydratase. Plant Physiol. 107:719–723.

    Google Scholar 

  25. PFISTER, K., STEINBACK, K. E., GARDNER, G., and ARNTZEN, C. J. 1981. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. U.S.A. 78:981–985.

    Google Scholar 

  26. Rimando, A. M., Dayan, F. E., Mikell, J. R., and Moraes, R. M. 1999. Phytotoxic lignans of Leucophyllum frutescens. J. Nat. Toxins 7:1–5.

    Google Scholar 

  27. Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–313.

    Google Scholar 

  28. Shaner, D. L., Anderson, P. A., and Stidham, M. A. 1984. Imidazolinones. Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545–546.

    Google Scholar 

  29. Scheel, D., and Casida, J. E. 1985. Sulfonylurea herbicides: Growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine, or isoleucine. Pestic. Biochem. Physiol. 23:398–412.

    Google Scholar 

  30. Sherman, T. D., and Vaughn, K. C. 1992. Immunofluorescence microscopy of tubulin to determine phytotoxin effects on the plant cytoskeleton, pp. 221–215, in P. Böger and G. Sandmann (eds.). Target Assays for Modern Herbicides and Related Phytotoxic Compounds. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  31. Siehl, D. L., Subramanian M. V., Walters, E. W., Lee, S.-F., Anderson, R. J., and TOSHI, A. G. 1996. Adenylosuccinate synthetase: Site of action of hydantocidin, a microbial phytotoxin. Plant Physiol. 110:753–758.

    Google Scholar 

  32. Singh, B. K., and Shaner, D. L. 1995. Changes in free amino acid pools can predict the mode of action of herbicides. Pestic. Sci. 43:221–225.

    Google Scholar 

  33. Vaughan, M. A., and Vaughn, K. C. 1990. DCPA causes cell plate disruption in wheat roots. Ann. Bot. 65:379–388.

    Google Scholar 

  34. Vaughn, K. C., and Duke, S. O. 1981. Tentoxin-induced loss of plastidic polyphenol oxidase. Physiol. Plant. 53:421–428.

    Google Scholar 

  35. Vaughn, K. C., and Duke, S. O. 1984. Tentoxin stops the processing of polyphenol oxidase into an active protein. Physiol. Plant 60:257–261.

    Google Scholar 

  36. Vaughn, K. C., and Lehnen, L. P. 1991. Disrupter herbicides. Weed Sci. 39:450–457.

    Google Scholar 

  37. Vaughn, K. C., Hoffman, J. C., Hahn, M. G., and Staehelin, L. A. 1996. The herbicide dichlobenil disrupts cell plate formation: Immunogold characterization. Protoplasma 194:117–132.

    Google Scholar 

  38. Weidenhamer, J. D., Morton, T. C., and Romeo, J. T. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13:1481–1491.

    Google Scholar 

  39. Weidenhamer, J. D., Macias, F. A., Fischer, N. H., and Williamson, G. B. 1993. Just how insoluble are monoterpenes? J. Chem. Ecol. 19:1799–1807.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dayan, F.E., Romagni, J.G. & Duke, S.O. Investigating the Mode of Action of Natural Phytotoxins. J Chem Ecol 26, 2079–2094 (2000). https://doi.org/10.1023/A:1005512331061

Download citation

  • Mode of action
  • mechanism of action
  • methods
  • bioassay
  • allelochemical
  • herbicide
  • phytotoxin
  • natural products