Skip to main content
Log in

Influence of Aerobic Oxidation of Mouse Erythrocytes on their Recognition by Macrophages

  • Published:
Bioscience Reports

Abstract

Membrane protein modification can change cell surface properties which canbe correlated with altered macrophage-erythrocyte interactions. Mouseerythrocytes were incubated in phosphate buffer for different times toinduce protein modification. Mouse erythrocyte membrane changes wereanalyzed by infrared analyses and gel electrophoresis. Proteolyticdigestion of membrane proteins was observed. After 22 hours preliminaryincubation, the number of erythrocytes adhering to a monolayer ofmacrophages reached a maximum, the majority of which had not beenphagocytosed. Most of the erythrocytes incubated for 40 hours underwentphagocytosis after adhesion to the macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brovelli, A. et al. (1991) Red Blood Cell Aging (Magnani, M. and De Flora, A., eds.). Plenum Press, New York, pp. 59–63.

    Google Scholar 

  2. Bartosz, G. (1991) Erythrocyte aging: physical and chemical membrane changes. Gerontology 37:33–67.

    PubMed  Google Scholar 

  3. Kay, M. M. B., Wyant, T. and Goodman, J. (1994) Autoantibodies to band 3 during aging and disease and aging interventions. Ann. N.Y. Acad. Sci. USA 719:419–447.

    Google Scholar 

  4. Schluter, K., and Drenckhanhn, D. (1986). Co-clustering of denatured hemoglobin with band 3: Its role in binding of autoantibodies against band 3 to abnormal and aged erythrocytes. Proc. Natl. Acad. Sci. USA 83:6137–6141.

    PubMed  Google Scholar 

  5. Lutz, H. U. (1992) Naturally occurring anti-band 3 antibodies. Transfusion Medicine Reviews 6:201–211.

    PubMed  Google Scholar 

  6. Beppu, M., Ochiai, H., and Kikugawa, K. (1989) Macrophage recognition of periodate-treated erythrocytes: Involvement of disulfide formation of the erythrocyte membrane proteins. Biochim. Biophys. Acta. 979:35–45.

    PubMed  Google Scholar 

  7. Beppu, M., Takahashi, T., Kashiwada, M., Masukawa, S., and Kikugawa, K. (1994) Macrophage recognition of saccharide chains on the erythrocytes damaged by iron-catalyzed oxidation. Arch. Biochem. Biophys. 312:189–197.

    PubMed  Google Scholar 

  8. Stocchi, V. et al. (1994) Inactivation of rabbit red blood cell hexoquinase activity promoted in vitro by an oxygen-radical generation system. Arch. Biochem. Biophys. 311:160–167.

    PubMed  Google Scholar 

  9. Turrini, F., Manu, F., Cappadoro, M., Ulliers, D., Giribaldi, G., and Arese, P. (1994) Binding of naturally occurring antibodies to oxidatively and nonoxidatively modified erythrocyte band 3. Biochim. Biophys. Acta 1190:297–303.

    PubMed  Google Scholar 

  10. Ferrali, M., Signorini, C., Ciccoli, L., and Comporti, M. (1992) Iron released from an erythrocyte lysate by oxidative stress is diffusible and in redox active form. Biochem. J. 285:295–301.

    PubMed  Google Scholar 

  11. Ferrali, M., Signorini, C., Ciccoli, L. and Comporti, M. (1993) Iron release and membrane damage in erythrocytes exposed to oxidizing agents: phenylhydrazine, divicine and isouramil. FEBS Letters 319:40–44.

    PubMed  Google Scholar 

  12. Signorini, C., Ferrali, M., Ciccoli, L., Sugherini, L., Magnani, A., and Comporti, M. (1995) Iron release, membrane protein oxidation and erythrocyte ageing. FEBS Letters 362:165–170.

    PubMed  Google Scholar 

  13. Alvarez, F. J., Jordán, J. A., Herr\'aez, A., Díez, J. C., and Tejedor, M. C. (1998) Hypotonically loaded rat erythrocytes deliver encapsulated substances into peritoneal macrophages. J. Biochem. 123:233–239.

    PubMed  Google Scholar 

  14. Alvarez et al. (1998) Cross-linking treatment of loaded erythrocytes increases delivery of encapsulated substance to macrophages. Biotechnol. Appl. Biochem. 27:139–143.

    PubMed  Google Scholar 

  15. Jordán, J. A. et al. (1998) Differential induction of macrophage recognition of carrier erythrocytes by treatment with band 3 cross-linkers. Biotechnol. Appl. Biochem. 27:133–137.

    PubMed  Google Scholar 

  16. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  17. Jordán, J. A., DeLoach, J. R., Luque, J., and Díez, J. C. (1996) Targeting of mouse erythrocytes by band 3 crosslinkers. Biochim. Biophys. Acta. 1291:27–34.

    PubMed  Google Scholar 

  18. Morrison, M., Michaels, A. W., Phillips, D. R. and Choi, S. (1974) Life span of erythrocyte membrane protein. Nature 248:763–789.

    PubMed  Google Scholar 

  19. Vaysse, J., Gattegno, L., Bladier, D., and Aminoff, D. (1986) Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by beta-galactosyl derivatives. Proc. Natl. Acad. Sci. USA 83:1339–1343.

    PubMed  Google Scholar 

  20. Davies, K. J. A., and Goldberg, A. L. (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanism in erythrocytes. J. Biol. Chem. 263:8220–8226.

    Google Scholar 

  21. Kay, M. M. B. (1983) Appearance of a terminal differentiation antigen on senescent and damaged cells and its implications for physiologic autoantibodies. Biomembrane 11:119–159.

    Google Scholar 

  22. Beppu, M., Iosue, M., Ishikawa, T., and Kikugawa, K. (1994) Presence of membrane bound proteinases that preferentially degrade oxidatively damaged erythrocyte proteins as secondary antioxidant defense. Biochim. Biophys. Acta 1196:81–87.

    PubMed  Google Scholar 

  23. Beppu, M., Takahashi, T., Hayshi, T., and Kikugawa, K. (1994) Mechanism of macrophage recognition of SH-oxidized erythrocytes: recognition of glycophorin A on erythrocytes by a macrophage receptor for sialosaccharides. Biochim. Biophys. Acta 1223:55–56.

    Google Scholar 

  24. Lutz, H. U. et al. (1987) Naturally occurring anti-band 3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythocytes. Proc. Natl. Acad. Sci. USA 84:7368–7372.

    PubMed  Google Scholar 

  25. Sambrano, G. R., Parthasarathy, S., and Steinberg, D. (1994) Recognition of oxidatively damaged erythrocytes by a macrophage receptor with specificity for oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 91:3265–3269.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmos, G., Lotero, L.A., Herráez, A. et al. Influence of Aerobic Oxidation of Mouse Erythrocytes on their Recognition by Macrophages. Biosci Rep 20, 157–166 (2000). https://doi.org/10.1023/A:1005511402046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005511402046

Navigation