Skip to main content
Log in

Habitat-specific Signal Structure for Olfaction: An Example from Artificial Streams

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many animals use chemical signals to acquire information about their habitats. The structure of this information is dependent upon specific features within a habitat, and the information in signals can be habitat-specific. We quantified the spatial and temporal information in an aquatic odor plume in three different artificial stream habitats with different substrate types by measuring turbulent odor plumes with an electrochemical detection system. Streams had one of three substrate types that correlated with typical aquatic habitats: sand (≈4.2 × 10−2 cm diameter), gravel (≈2.5 cm), and cobble (≈4.5 cm). As predicted from the hydrodynamics, the spatial and temporal structures of the signals were different on different substrates. Spectral analysis showed that the sand and cobble substrates had signals that were dominated by lower frequency fluctuations, whereas gravel had the highest and broadest range of signal fluctuations. Cross- and autocorrelations showed that signals on the gravel substrate had the largest spatial and shortest temporal components. Our results imply that the information obtained from chemical signals may be limited in some habitats. These constraints on information may affect how organisms perform chemically mediated behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aylor, D. E. 1976. Estimating peak concentrations of pheromones in the forest, pp. 177-188, in J. E. Anderson and M. K. Kaya (eds.). Perspectives in Forest Entomology. Academic Press, San Diego, California.

    Google Scholar 

  • Aylor, D. E., Parlange, Y.-J., and Granett, J. 1976. Turbulent dispersion of disparlure in the forest and male gypsy moth response. Environ. Entomol. 10:211–218.

    Google Scholar 

  • Bell, W. J., and Tobin, T. R. 1982. Chemo-orientation. Biol. Rev. 57:219–260.

    Google Scholar 

  • Borroni, P. F., and Atema, J. 1988. Adaptation in chemoreceptor cells I. Self-adapting backgrounds determine threshold and cause parallel shift of dose-response function. J. Comp. Physiol. A 164:67–74.

    Google Scholar 

  • Borroni, P. F., and Atema, J. 1989. Adaptation in chemoreceptor cells II. The effects of crossadapting backgrounds depend on spectral tuning. J. Comp. Physiol. A 165:669–677.

    Google Scholar 

  • Bossert, W. H., and Wilson, E. O. 1963. The analysis of olfactory communication among animals. J. Theor. Biol. 5:443–469.

    Google Scholar 

  • Cheer, A. Y. L., and Koehl, M. A. R. 1987. Paddles and rakes: fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129:17–39.

    Google Scholar 

  • Devine, D. V., and Atema, J. 1982. Function of chemoreceptor organs in spatial orientation of the lobster Homarus americannus: Differences and overlap. Biol. Bull. 163:144–153.

    Google Scholar 

  • Gerhardt, G. A., Oke, A. F., Nagy, G., Moghaddam, B., Adams, R. N. 1984. Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290:390–395.

    Google Scholar 

  • Gifford, F. A. 1968. An outline of theories of diffusion of lower layers of the plume dispersion model. Int. J. Air. Pollut. 3:253–260.

    Google Scholar 

  • Gleeson, R. A., Carr, W. E. S., and Trapido-Rosenthal, H. G. 1993. Morphological characteristics facilitating stimulus access and removal in the olfactory organ of the spiny lobster Panulirus argus: Insight from design. Chem. Senses 18:67–75.

    Google Scholar 

  • Gomez, G., Voigt, R., and Atema, J. 1994. Frequency filter properties of lobster chemoreceptor cells determined with high resolution stimulus measurement. J. Comp. Physiol. A 174:803–811.

    Google Scholar 

  • Hart, D. D., Clark, B. D., and Jasentuliyana, A. 1996. Fine-scale field measurement of benthic flow environments inhabited by stream invertebrates. Limnol. Oceangr. 41:297–308.

    Google Scholar 

  • Hodgson, E. S., and Matthewson, R. F. 1971. Chemosensory orientation in sharks. Ann. N.Y. Acad. Sci. 188:175–182.

    Google Scholar 

  • Johnsen, P. B., and Teeter, J. H. 1980. Spatial gradient detection of chemical cues by catfish. J. Comp. Physiol. 140:95–99.

    Google Scholar 

  • Kennedy, J. S. 1982. Mechanism of moth attraction: a modified view based on wind tunnel experiments with flying male Adoxophyes. Colloq. INRA 7:189–192.

    Google Scholar 

  • Kundu, P. K. 1990. Fluid Mechanics. Academic Press, New York.

    Google Scholar 

  • Mafra-Neto, A., and CardÉ, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    Google Scholar 

  • Mafra-Neto, A., and CardÉ, R. T. 1995. Influence of plume structure and pheromone concentration on the upwind flight of Cadra cautella males. Physiol. Entomol. 20:117–133.

    Google Scholar 

  • Mann, K. H., and Lazier, J. R. N. 1996. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Science, Cambridge, Massachusetts.

    Google Scholar 

  • Moore, P. A. 1994. A model of adaptation and disadaptation in olfactory receptor neurons: Implications for the coding of temporal and intensity patterns in odor signals. Chem. Senses 19:71–86.

    Google Scholar 

  • Moore, P. A., and Atema, J. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.

    Google Scholar 

  • Moore, P. A., and Grills, J. 1999. Chemical orientation to food by the crayfish, Orconectes rusticus: Influence by hydrodynamics. Anim. Behav. 58:953–963.

    Google Scholar 

  • Moore, P. A., Gerhardt, G. A., and Atema, J. 1989. High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes. Chem. Senses 14:829–840.

    Google Scholar 

  • Moore, P. A., Atema, J., and Gerhardt, G. A. 1991a. Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus. Chem. Senses 16:663–674.

    Google Scholar 

  • Moore, P. A., Scholz, N., and Atema, J. 1991b. Chemo-orientation of lobsters, Homarus americanus in turbulent odor plumes. J. Chem. Ecol. 17:1293–1307.

    Google Scholar 

  • Moore, P. A., Weissburg, M. J., Parrish, J. M., Zimmer-Faust, R. K., and Gerhardt, G. A. 1994. Spatial distribution of odors in simulated benthic boundary layer flows. J. Chem. Ecol. 20:255–279.

    Google Scholar 

  • Murlis, J. 1986. The structure of odour plumes, pp. 27-38, in T. L. Payne, M. C. Birch, and C. E. J. Kennedy (eds.). Mechanisms in Insect Olfaction. Claredon Press, Oxford.

    Google Scholar 

  • Murlis, J., and Jones, C. D. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.

    Google Scholar 

  • Nowell, A. R. M., and Jumars, P. A. 1984. Flow environments of aquatic benthos. Annu. Rev. Ecol. Syst. 15:303–328.

    Google Scholar 

  • Nowell, A. R. M., and Jumars, P. A. 1987. Flumes: Theoretical and experimental considerations for simulation of benthic environments. Oceanogr. Mar. Biol. Annu. Rev. 25:91–112.

    Google Scholar 

  • Pasquill, F. 1961. The estimation of the disperson of wind-borne material. Meteorol Mag. 90:33–49.

    Google Scholar 

  • Payne, T. L., Birch, M. C., and Kennedy, C. E. J. (eds.). 1986. Mechanisms in Insect Olfaction. Claredon Press, Oxford.

    Google Scholar 

  • Peckarsky, B. L. 1980. Predator-prey interactions between stoneflies and mayflies: Behavioral observations. Ecology 61:932–943.

    Google Scholar 

  • Petranka, J. W., Kats, L. B., and Sih, A. 1987. Predator-prey interaction among fish and larval amphibians: Use of chemical cues to detect prey. Anim. Behav. 35:420–425.

    Google Scholar 

  • Rubenstein, D. I., and Koehl, M. A. R. 1977. The mechanisms of filter feeding: Some theoretical considerations. Am. Nat. 111:981–994.

    Google Scholar 

  • Sanford, L. P. 1997. Turbulent mixing in experimental ecosystem studies. Mar. Ecol. Prog. Ser. 161:265–293.

    Google Scholar 

  • Schlichting, H. 1979. Boundary-Layer Theory, 7th ed. McGraw-Hill, New York.

    Google Scholar 

  • Schneider, R. W. S., Price, B. A., and Moore, P. A. 1998a. Antennae morphology as a physical filter of olfaction: Temporal tuning of the antennae of the honeybee Apis mellifera. J. Insect Physiol. 44:677–684.

    Google Scholar 

  • Schneider, R. W. S., Lanzen, J., and Moore, P. A. 1998b. Boundary layer effect on chemical signal movement near the antennae of the Sphinx moth Manduca sexta: Temporal filters for olfaction. J. Comp. Physiol. A 182:287–305.

    Google Scholar 

  • Suckling, D. M., and Karg, G. 1997. The role of foliage on mating disruption in apple orchards. Technology transfer in mating disruption. IOBC WPRS Bull. 20:169–174.

    Google Scholar 

  • Suckling, D. M., Karg, G., and Bradley, S. J. 1996. Apple foliage enhances mating disruption of lightbrown apple moth. J. Chem. Ecol. 22:325–341.

    Google Scholar 

  • Sutton, O. G. 1953. Micrometeorology. McGraw-Hill, New York.

    Google Scholar 

  • Tennekes, H., and Lumley, J. L. 1972. A First Course in Turbulence. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J. Insect Behav. 5:669–687.

    Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. U.S.A. 91:5756–5760.

    Google Scholar 

  • Weissburg, M. J., and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • Westerberg, H. 1991. Properties of aquatic odour trails, pp. 45-65, in K. Dø ving (ed.). Proceedings of the Tenth International Symposium on Olfaction and Taste. Graphic Communication System, Oslo.

    Google Scholar 

  • Zimmer-Faust, R. K., Sanfill, J. M., and Collard III, S. B. 1988. A fast multichannel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, P.A., Grills, J.L. & Schneider, R.W.S. Habitat-specific Signal Structure for Olfaction: An Example from Artificial Streams. J Chem Ecol 26, 565–584 (2000). https://doi.org/10.1023/A:1005482027152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005482027152

Navigation