Skip to main content
Log in

Diuron degradation by Phanerochaete chrysosporium BKM- F-1767 in synthetic and natural media

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

When incubated in synthetic (N-limited) medium and on ashwood chips, Phanerochaete chrysosporium BKM-F-1767 degraded 14 and 10 mg/l diuron, respectively. The wood chips were used as support and sole nutrient source for the fungus. A higher degradation efficiency was found in ashwood culture as compared to the liquid culture, probably as a result of the synergetic effect of attached fungal growth, presence of limiting-substrate conditions and the microenvironment provided by ashwood, all favorable for production of high extracellular enzyme titres. Diuron degradation occured during the idiophasic growth, in the presence of manganese peroxidase, detected as dominant enzyme in both cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armenante PM, Pal N, Lewandowski G (1994) Appl. Environ. Microbiol. 60: 1711–1718.

    Google Scholar 

  • Barr DP, Aust SD (1994) Env. Sci. Technol. 28: 79A-87A.

    Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Science 228: 1434–1436.

    Google Scholar 

  • Bumpus JA, Aust SD (1987) BioEssays 6: 166–170.

    Google Scholar 

  • de Jong E, Field JA, de Bont JAM (1994) FEMS Microbiol. Rev. 13: 153–188.

    Google Scholar 

  • Ellis PA, Camper ND (1982) J. Environ. Sci. Health B17: 277–289.

    Google Scholar 

  • Esposito E, Paulillo SM, Manfio GP (1998) Chemosphere 37: 541–548.

    Google Scholar 

  • Field JA, de Jong E, Feijoo-Costa G, de Bont JAM (1993) TIBTECH 11: 44–48.

    Google Scholar 

  • Gold MH, Glenn JK (1988) Methods Enzymol. 161: 258–264.

    Google Scholar 

  • Hammel KE (1989) Enzyme Microb. Technol. 1: 776–777.

    Google Scholar 

  • Hofrichter M, Scheibner K, Scheneegaß I, Fritsche W (1998) Appl. Environ. Microbiol. 64: 399–404.

    Google Scholar 

  • Howard PH (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Lewis Publishers, Inc., pp. 319–326.

  • Harazano K, Kondo R, Sakai K (1996) Appl. Environ. Microbiol. 62: 913–917.

    Google Scholar 

  • Huijser PJ (1994) Verontreiniging van de Maas door Diuron. RIZA, Nota nr.: 94.014, pp. 10–16.

  • Huijser PJ (1996) Verontreiniging van de Maas en Zijrivieren in 1994 en 1995 door Diuron. RIZA, Nota nr.: 96.018, pp. 40–41.

  • Jensen KA Jr, Bao W, Kawai S, Srebotnik E, Hammel KE (1996) Appl. Environ. Microbiol. 62: 3679–3686.

    Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Arch. Microbiol. 117: 277–285.

    Google Scholar 

  • Kirk TK, Lamar RT, Glaser JA (1992) The potential of white-rot fungi in bioremediation. In: Mongkolsuk S, Lovett PS, Trempy JE, eds. Biotechnology and Environmental Science: Molecular Approaches. New York: Plenum Press, pp. 131–138.

    Google Scholar 

  • Lewandowski GA, Armenante PM, Pak D (1990) Wat. Res. 24: 75–82.

    Google Scholar 

  • Madhun YA, Freed VH (1987) Chemosphere 16: 1003–1011.

    Google Scholar 

  • Mester T, de Jong E, Field JA (1995) Appl. Environ. Microbiol. 61: 1881–1887.

    Google Scholar 

  • Mester T, Swarts HJ, Romero i Sole S, de Bont JAM, Field JA (1997) Appl. Environ. Microbiol. 63: 1987–1994.

    Google Scholar 

  • Orth AB, Royse DJ, Tien, M (1993) Appl. Environ. Microbiol. 59: 4017–4023.

    Google Scholar 

  • Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L (1993) Appl. Environ. Microbiol. 59: 260–265.

    Google Scholar 

  • Pal N, Lewandoski G, Armemante PM (1995a) Biotechnol. Bioengg. 46: 599–609.

    Google Scholar 

  • Pal N, Chritodoulatos C, Kodali S (1995b) Proc. 27th Ind. Waste Conf.: 284–293.

  • Paszczynski A, Crawford RL (1995) Biotechnol. Prog. 11: 368–379.

    Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal Decomposition of Wood. Its Biology and Ecology. New York: Wiley-Interscience, pp. 14–58.

    Google Scholar 

  • Sayadi S, Zorgani F, Ellouz R (1996) Role of lignin peroxidase and manganese peroxidase of Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. In: Moo-Young M, Anderson WA, Chakrabarty AM, eds. Environmental Biotechnology: Principles and Applications. Dordrecht: Kluwer Academic Publishers, pp. 511–523.

    Google Scholar 

  • Tien M, Kirk TK (1988) Methods Enzymol. 161: 238–249.

    Google Scholar 

  • Tillmanns GM, Wallnofer PR, Engelhardt G, Olie K, Hutzinger O (1978) Chemosphere 1: 59–64.

    Google Scholar 

  • Vares T, Lundell TK, Hatakka AI (1992) FEMS Microbiol. Lett. 99: 53–58.

    Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Appl. Environ. Microbiol. 61: 3515–3520.

    Google Scholar 

  • Venkatadri R, Irvine RL (1993) Wat. Res. 27: 591–596.

    Google Scholar 

  • Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod J-L, Khadrani A (1996) Chemosphere 33: 2045–2056.

    Google Scholar 

  • Weinberger M, Bollag J-M (1972) Appl. Microbiol. 24: 750–754.

    Google Scholar 

  • Yum K-J, Peirce JJ (1998a) J. Env. Engg. 124: 184–190.

    Google Scholar 

  • Yum K-J, Peirce JJ (1998b) Water Env. Res. 70: 205–213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratila-Apachitei, L.E., Hirst, J.A., Siebel, M.A. et al. Diuron degradation by Phanerochaete chrysosporium BKM- F-1767 in synthetic and natural media. Biotechnology Letters 21, 147–154 (1999). https://doi.org/10.1023/A:1005476018325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005476018325

Navigation