Climatic Change

, Volume 43, Issue 2, pp 353–367 | Cite as

Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model

  • Stefan Rahmstorf
  • Andrey Ganopolski


We present global warming scenarios computed with an intermediate-complexity atmosphere-ocean-sea ice model which has been extensively validated for a range of past climates (e.g., the Last Glacial Maximum). Our simulations extend to the year 3000, beyond the expected peak of CO2 concentrations. The thermohaline ocean circulation declines strongly in all our scenarios over the next 50 years due to a thermal effect. Changes in the hydrological cycle determine whether the circulation recovers or collapses in the long run. Both outcomes are possible within present uncertainty limits. In case of a collapse, a substantial long-lasting cooling over the North Atlantic and a drying of Europe is simulated.


Europe Global Warming Thermal Effect Drying Ocean Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bond, G., Broecker, W., Johnsen, S. McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G.: 1993, ‘Correlations between Climate Records from North Atlantic Sediments and Greenland Ice’, Nature 365, 143–147.Google Scholar
  2. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: 1997, ‘A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates’, Science 278, 1257–1266.Google Scholar
  3. Broecker, W.: 1987, ‘Unpleasant Surprises in the Greenhouse?’, Nature 328, 123.Google Scholar
  4. Broecker, W.: 1997, ‘Thermohaline Circulation, the Achilles Heel of our Climate System: Will Man-Made CO2 Upset the Current Balance?’, Science 278, 1582–1588.Google Scholar
  5. Campbell, C. J. and Laherrère, J. H.: 1998, ‘The End of Cheap Oil’, Scientific American (March), 60–65.Google Scholar
  6. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, N. S., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., and Bond, G.: 1993, ‘Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record’, Nature 364, 218–220.Google Scholar
  7. Ganopolski, A., Kubatzki, C., Claussen, M. Brovkin, V., and Petoukhov, V.: 1998a, ‘The Role of Vegetation-Atmosphere-Ocean Interaction for the Climate System during the Mid-Holocene’, Science 280, 1916–1919.Google Scholar
  8. Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M.: 1998b, ‘Simulation of Modern and Glacial Climates with a Coupled Global of Intermediate Complexity’, Nature 391, 350–356.Google Scholar
  9. Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., and Kubatzki, C.: 1998c, ‘CLIMBER-2: A Climate System Model of Intermediate Complexity, Part II: Model Sensitivity’, Clim. Dyn., submitted.Google Scholar
  10. Houghton, J. T., Meira Filho, L. G., Callander B. A., Harris, N., Kattenberg, A., and Maskell, K.: 1995, Climate Change 1995, Cambridge University Press, Cambridge, p. 572.Google Scholar
  11. Keeling, C. D. and Whorf, T. P.: 1991, Trends 91: A Compendium of Data on Global Change, Boden, T. A. et al. (eds.), Oak Ridge Natl. Lab., Oak Ridge, TN.Google Scholar
  12. Lindzen, R. S.: 1990, ‘Some Coolness Converning Global Warming’, Bull. Amer. Meteorol. Soc. 71, 288–299.Google Scholar
  13. Lindzen, R. S.: 1993, ‘Absence of Scientific Basis’, Res. Exploration 9, 191–200.Google Scholar
  14. Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and Storage of CO2 in the Ocean — An Inorganic Ocean-Circulation Carbon Cycle Model’, Clim. Dyn. 2, 63–90.Google Scholar
  15. Manabe, S., Spelman, M. J., and Stouffer, R. J.: 1992, J. Climate 5, 105–126.Google Scholar
  16. Manabe, S. and Stouffer, R. J.: 1988, ‘Two Stable Equilibria of a Coupled Ocean-Atmosphere Model’, J. Climate 1, 841–866.Google Scholar
  17. Manabe, S. and Stouffer, R. J.: 1993, ‘Century-Scale Effects of Increased Atmospheric CO2 on the Ocean-Atmosphere System’, Nature 364, 215–218.Google Scholar
  18. Manabe, S. and Stouffer, R. J.: 1994, ‘Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide’, J. Climate 7, 5–23.Google Scholar
  19. Neftel, A., Friedli, H., Moore, E., Lotscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B.: 1990, Trends 90: A Compendium of Data on Global Change, Boden, T. A. et al. (eds.), Oak Ridge Natl. Lab., Oak Ridge, TN.Google Scholar
  20. Petoukhov, V., Ganapolski, A., Brovkin, V., Clausen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: 1998, ‘CLIMBER-2: A Climate System Model of Intermediate Complexity, Part 1: Model Description and Performance for Present Climate’, Clim. Dyn., submitted.Google Scholar
  21. Rahmstorf, S.: 1996, ‘On the Freshwater Forcing and Transport of the Atlantic Thermohaline Circulation’, Clim. Dyn. 12, 799–811.Google Scholar
  22. Rahmstorf, S.: 1997, ‘Risk of Sea-Change in the Atlantic’, Nature 388, 825–826.Google Scholar
  23. Rahmstorf, S., Marotzke, J., and Willebrand, J.: 1996, ‘Stability of the Thermohaline Circulation’, in Krauss, W. (ed.), The Warm Water Sphere of the North Atlantic Ocean, Borntraeger, Stuttgart, pp. 120–158.Google Scholar
  24. Roemmich, D. H. and Wunsch, C.: 1985, ‘Two Transatlantic Sections: Meridonial Circulation and Heat Flux in the Subtropical North Atlantic Ocean’, Deep-Sea Res. 32, 619–664.Google Scholar
  25. Schiller, A., Mikolajewicz, U., and Voss, R.: 1997, ‘The Stability of the Thermohaline Circulation in a Coupled Ocean-Atmosphere General Circulation Model’, Clim. Dyn. 13, 325–347.Google Scholar
  26. Schneider, S. H, Peteet, D. M., and North, G. R.: 1987, ‘A Climate Model Intercomparison for the Younger Dryas and its Implications for Paleoclimatic Data Collection’, in Berger, W. H. and Labeyrie, D. (eds.), Abrupt Climatic Change, D. Reidel, Dordrecht, pp. 399–417.Google Scholar
  27. Severinghaus, J., Sowers, T., Brook, E. J., Alley, R. B., and Bender, M. L.: 1998, ‘Timing of Abrupt Climate Change at the End of the Younger Dryas Interval from Thermally Fractionated Gases in Polar Ice’, Nature 391, 141–146.Google Scholar
  28. Stocker, T. and Schmittner, A.: 1997, ‘Influence of CO2 Emission Rates on the Stability of the Thermohaline Circulation’, Nature 388, 862–865.Google Scholar
  29. Stocker, T. and Wright, D. G.: 1991, ‘A Zonally Averaged Ocean Model for the Thermohaline Circulation, Part II: Interocean Circulation in the Pacific Atlantic Basin System’, J. Phys. Oceanog. 21 1725–1739.Google Scholar
  30. Stommel, H.: 1961, ‘Thermohaline Convection with Two Stable Regimes of Flow’, Tellus 13, 224–230.Google Scholar
  31. White, J. W. C.: 1993, ‘Don't Touch that Dial’, Nature 364, 186.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Stefan Rahmstorf
    • 1
  • Andrey Ganopolski
    • 1
  1. 1.Potsdam Institute for Climate ResearchPotsdamGermany

Personalised recommendations