Skip to main content
Log in

Binding of Rat Brain Hexokinase to Recombinant Yeast Mitochondria: Identification of Necessary Molecular Determinants

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The association in vitro of rat brain hexokinase to mitochondria from rat liver or yeast (wildtype, porinless, or expressing recombinant human porin) was studied in an effort to identifyminimal requirements for each component. A short hydrophobic N-terminal peptide ofhexokinase, readily cleavable by proteases, is absolutely required for its binding to all mitochondria.Mammalian porins are significantly cleaved at two positions in putative cytoplasmic loopsaround residues 110 and 200, as determined by proteolytic-fragment identification usingantibodies. Recombinant human porin in yeast mitochondria is more sensitive to proteolysisthan wild-type porin in rat liver mitochondria. Recombinant yeast mitochondria, harboringseveral natural or engineered porins from various sources, bind hexokinase to variable extentwith marked preference for the mammalian porin1 isoform. Genetic alteration of this isoformat the C-, but not the N-terminal, results in a significant reduction of hexokinase bindingability. Macromolecular crowding (dextran) promotes a stronger association of the enzyme toall recombinant mitochondria, as well as to proteolytically digested organelles. Consequently,brain hexokinase association with heterologous mitochondria (yeast) in these conditions occursto an extent comparable to that with homologous (rat) mitochondria. The study, also pertinentto the topology and organization of porin in the membrane, represents a necessary first stepin the functional investigation of the physiological role of mammalian hexokinase binding tomitochondria in reconstituted heterologous recombinant systems, as models to cellularmetabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aflalo, C., and Azoulay, H. (1998). J. Bioenerg. Biomembr. 30, 245-255.

    Google Scholar 

  • Aleshin, A. E., Fromm, H. J., and Honzatko, R. B. (1998). FEBS Lett. 434, 42-46.

    Google Scholar 

  • Arora, K. K., and Pedersen, P. L. (1988). J. Biol. Chem. 263, 17422-17428.

    Google Scholar 

  • Arora, K. K., Filburn, C. R., and Pedersen, P. L. (1993). J. Biol. Chem. 268, 18259-18266.

    Google Scholar 

  • Aubert-Foucher, E., Font, B., and Gautheron, D. C. (1984). Arch. Biochem. Biophys. 232, 391-399.

    Google Scholar 

  • Azoulay, H., and Aflalo, C. (1996). In BioThermoKinetics of the Living Cell(Westerhoff, H. V., Snoep, J. L., Sluse, F. E., Wijker, J. E., and Kholodenko, B. N., eds.), BioThermoKinetics Press, Amsterdam, pp. 289-294.

    Google Scholar 

  • Babel, D., Walter, G., Gotz, H., Thinnes, F. P., Jurgens, L., Konig, U., and Hilschmann, N. (1991). Hoppe Seyler Biol. Chem. 372, 1027-1034.

    Google Scholar 

  • Benz, R. (1994). Biochim. Biophys. Acta 1197, 167-196.

    Google Scholar 

  • Beutner, G., Ruck, A., Riede, B., and Brdiczka, D. (1998). Biochim. Biophys. Acta 1368, 7-18.

    Google Scholar 

  • Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990). Science 247, 1233-1236.

    Google Scholar 

  • Blachly-Dyson, E., Zambronicz, E. B., Yu, W. H., Adams, V., McCabe, E. R., Adelman, J., Colombini, M., and Forte, M. (1993). J. Biol. Chem. 268, 1835-1841.

    Google Scholar 

  • Blachly-Dyson, E., Song, J., Wolfgang, W. J., Colombini, M., and Forte, M. (1997). Mol. Cell. Biol. 17, 5727-5738.

    Google Scholar 

  • Bustamente, E., Morris, H. P., and Petersen, P. L. (1981). J. Biol. Chem. 256, 8699-8707.

    Google Scholar 

  • Cesar, M. D., and Wilson, J. E. (1998). Arch. Biochem. Biophys. 350, 109-117.

    Google Scholar 

  • De Pinto, V., Prezioso, G., Thinnes, F., Link, T. A., and Palmieri, F. (1991). Biochemistry 30, 10191-10200.

    Google Scholar 

  • Elkeles, A., Devos, K., Grauer, D., Zizi, M., and Breiman, A. (1995). Plant Mol. Biol 29, 109-124.

    Google Scholar 

  • Elkeles, A., Breiman, A., and Zizi, M. (1997). J. Biol. Chem. 272, 6252-6260.

    Google Scholar 

  • Felgner, P. L., Messer, J. L., and Wilson, J. E. (1979). J. Biol. Chem. 254, 4946-4949.

    Google Scholar 

  • Gelb, B. D., Adams, V., Jones, S. N., Griffin, L. D., MacGregor, G. R., and McCabe, E. R. (1992). Proc. Natl. Acad. Sci. USA 89, 202-206.

    Google Scholar 

  • Laemmli, U. K. (1970). Nature London 227, 680-685.

    Google Scholar 

  • Laterveer, F. D., Gellerich, F. N., and Nicolay, K. (1995). Eur. J. Biochem. 232, 569-577.

    Google Scholar 

  • Magnani, M., Crinelli, R., Antonelli, A., Casabianca, A., and Serafini, G. (1994). Biochim. Biophys. Acta 1206, 180-190.

    Google Scholar 

  • Mannella, C. A. (1997). J. Bioenerg. Biomebr. 29, 525-531.

    Google Scholar 

  • Mihara, K., Blobel, G., and Sato, R. (1982). Proc. Natl. Acad. Sci. USA 79, 7102-7106.

    Google Scholar 

  • Minton, A. (1993). J. Mol. Recognition 6, 211-214.

    Google Scholar 

  • Mulichak, A., Wilson, J., Padmanabhan, K., and Garavito, R. (1998). Nature Struct. Biol. 5, 555-560.

    Google Scholar 

  • Polakis, P. G., and Wilson, J. E. (1985). Arch. Biochem. Biophys. 236, 328-337.

    Google Scholar 

  • Sampson, M. J., Lovell, R. S., and Craigen, W. J. (1997). J. Biol. Chem. 272, 18966-18973.

    Google Scholar 

  • Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998). Eur. J. Biochem. 253, 627-636.

    Google Scholar 

  • Song, J., and Colombini, M. (1996). J. Bioenerg. Biomembr. 28, 153-161.

    Google Scholar 

  • Stocchi, V., Fiorani, M., Biagiarelli, B., Piccoli, G., Saltarelli, R., Palma, F., Cucchiarini, L., and Dacha, M. (1995). Biochem. Mol. Biol. Intern. 35, 1133-1142.

    Google Scholar 

  • Sui, D., and Wilson, J. E. (1997). Arch. Biochem. Biophys. 345, 111-125.

    Google Scholar 

  • Towbin, J. A., Minter, M., Brdiczka, D., Adams, V., de Pinto, V., Palmieri, F., and McCabe, E. R. (1989). Biochem. Med. Metab. Biol. 42, 161-169.

    Google Scholar 

  • Wicker, U., Bucheler, K., Gellerich, F. N., Wagner, M., Kapischke, M., and Brdiczka, D. (1993). Biochim. Biophys. Acta 1142, 228-239.

    Google Scholar 

  • Wilson, J. (1978). Trends Biochem. Sci. 3, 124-125.

    Google Scholar 

  • Wilson, J. E. (1995). Rev. Physiol. Biochem. Pharmacol. 126, 65-198.

    Google Scholar 

  • Wilson, J. E. (1997). J. Bioenerg. Biomembr. 29, 97-102.

    Google Scholar 

  • Wilson, J. E., and Smith, A. D. (1985). J. Biol. Chem. 260, 12838-12843.

    Google Scholar 

  • Xie, G., and Wilson, J. E. (1990). Arch. Biochem. Biophys. 276, 285-293.

    Google Scholar 

  • Xie, G. C., and Wilson, J. E. (1988). Arch. Biochem. Biophys. 267, 803-810.

    Google Scholar 

  • Yu, W. H., Wolfgang, W., and Forte, M. (1995). J. Biol. Chem. 270, 13998-14006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Aflalo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azoulay-Zohar, H., Aflalo, C. Binding of Rat Brain Hexokinase to Recombinant Yeast Mitochondria: Identification of Necessary Molecular Determinants. J Bioenerg Biomembr 31, 569–579 (1999). https://doi.org/10.1023/A:1005469028274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005469028274

Navigation