Skip to main content
Log in

Larvicidal Effect of a Cell-Wall Fraction Isolated from Alder Decaying Leaves

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Decaying alder leaves in water from Alpine Aedes breeding sites, particularly their toxicity to larval Culicidae, were investigated and characterized with comparative toxicological and chemical methods. Bioassays that used third-instar Aedes aegypti as a reference species indicated that the larvicidal effect of crude leaf litter varied with decaying age of the litter, while no toxicity was detected from leaching water of the mosquito breeding sites. Ten-month-old leaf litter was the most toxic. Comparison of the different soluble and insoluble fractions obtained after sequential extraction of decomposed litter allowed us to localize the toxicity factor to an insoluble cell-wall fraction. The toxicity seems to be linked to phenolic activity. It is higher than that found for tannic acid solutions used as a reference to mimic the larvicidal effects of the molecules naturally occurring in decaying litter. The pattern of establishing the larvicidal effect of alder leaf litter in water of Alpine Aedes breeding sites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265–267.

    Google Scholar 

  • Alibert, G., Marigo, G., and Boudet, A. 1969. Recherches sur la biosynthèse des composés aromatiques chez les végétaux supérieurs. Identification des acides phénoliques de Quercus pedunculata Ehrh. Physiol. Veg. 7:57–68.

    Google Scholar 

  • Appel, H. M. 1993. Phenolic compounds in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • Arnasson, J. T., Gale, J., Conhil de Beyssac, B., Sen, A., Miller, S. S., PhilogÉne, B. J. R., Lambert, J. D. H., Fulcher, R. G., Serratos, A., and Mihm, J. 1929. Role of phenolics in resistance of maize grain to the stored grain insects, Prostephanus truncatus (Horn) and Sitophilus zeamais (Motsch.). J. Stored Prod. Res. 28:119–126.

    Google Scholar 

  • Barbehenn, R. V., and Martin, M. M. 1994. Tannin sensitivity in larvae of Malacosoma disstria (Lepidoptera): roles of the peritrophic envelope and midgut oxidation. J. Chem. Ecol. 20:1985–2001.

    Google Scholar 

  • Beart, J. E., Lilley, T. H., and Haslam, E. 1985. Polyphenol interactions. Part 2. Covalent binding of procyanidins to proteins during acid-catalized decomposition: Observations on some polymeric proanthocyanidins. J. Chem. Soc. Perk. Trans. II 1985:1439–1443.

    Google Scholar 

  • Bergvinson, D. J., Arnason, J. T., Hamilton, R. I., Tachibana, S., and Towers, G. H. N. 1994. Putative role of photodimerized phenolic acids in maize resistance to Ostrinia nubilalis (Lepidoptera: Pyralidae). Environ. Entomol. 23:1516–1523.

    Google Scholar 

  • Bernays, E. A., Chamberlain, D. J., and Leather, E. M. 1981. Tolerance of acridids to ingested condensed tannin. J. Chem. Ecol. 7:247–256.

    Google Scholar 

  • Brown, S. A., and Neish, A. C. 1959. Studies of lignin biosynthesis using isotopic carbon. VIII. Isolation of radioactive hydrogenolysis products of lignin. J. Am. Chem. Soc. 41:2419–2424.

    Google Scholar 

  • Classen, D., Arnason, J. T., Serratos, J. A., Lambert, J. D. H., Nozzolillo, C., and PhilogÉne, B. J. R. 1990. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in Cimmyt's collections. J. Chem. Ecol. 16:301–315.

    Google Scholar 

  • CoÛteaux, M. M., Bottner, P., and Berg, B. 1995. Litter decomposition, climate and litter quality. Tree 10:63–66.

    Google Scholar 

  • David, J. P., Rey, D., Pautou, M. P., and Meyran, J. C. 2000. Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J. Invertebr. Pathol. 75:9–18.

    Google Scholar 

  • De Veau, E. J. I., and Schultz, J. C. 1992. Reassessment of interaction between gut detergents and tannins in Lepidoptera and significance for gypsy moth larvae. J. Chem. Ecol. 18:1437–1453.

    Google Scholar 

  • El Basyouni, S., and Neish, A. C. 1966. Occurrence of metabolically active bound forms of cinnamic acid and its phenolic derivatives in acetone powders of wheat and barley plants. Phytochemistry 5:683–691.

    Google Scholar 

  • Felton, G. W., and Duffey, S. S. 1992. Ascorbate oxidation reduction in Helicoverpa zea as a scavenging system against dietary oxidants. Arch. Insect Biochem. Physiology 19:27–37.

    Google Scholar 

  • Felton, G. W., Donato, K., Del Vecchio, R. J., and Duffey, S. S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15:2667–2694.

    Google Scholar 

  • Gallardo, A., and Merino, J. 1992. Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15:213–228.

    Google Scholar 

  • Gallet, C., and Lebreton, P. 1995. Evolution of phenolic patterns in plant and associated litters and humus of a mountain forest ecosystem. Soil Biol. Biochem. 27:157–165.

    Google Scholar 

  • Helm, R. F., Ranatunga, T. D., and Chandra, A. M. 1997. Lignin-hydrolysable interactions in wood. J. Agric. Food Chem. 45:3100–3106.

    Google Scholar 

  • Kumar, S., and Singh, D. 1995. Allelopathy in sustainable agriculture, forestry and environment—a review of an international symposium. Curr. Res. Med. Arom. Plants 17:29–41.

    Google Scholar 

  • Maire, A. 1971. Indice des opérations de démoustication sur les biotopes larvaires à Aedes dans la région RhÔne-Alpes. Thesis. University of Grenoble, Grenoble, France.

    Google Scholar 

  • Marigo, G. 1973. Sur une méthode de fractionnement et d'estimation des composés phénoliques chez les végétaux. Analusis 2:106–110.

    Google Scholar 

  • Merritt, R. W., Craig, D. A., Wotton, R. S., and Walker, E. D. 1996. Feeding behavior of aquatic insects: Case studies on black fly and mosquito larvae. Invertebr. Biol. 115:206–217.

    Google Scholar 

  • Nishizawa, M., Yamagishi, T., Nonaka, G., and Nishioka, I. 1982. Tannins and related compounds. 5. Isolation and characterization of polygalloylglucose from chinese gallotannin. J. Chem. Soc. Perkin Trans. 1:2963–2968.

    Google Scholar 

  • Pautou, G., and Girel, J. 1999. The floodplain forest of the French Upper RhÔne river valley, in E. Klimo & H. Hager (eds.). Research Report of the European Forest Institute, Joensuu, Finland. In press.

    Google Scholar 

  • Petersen, R. C., and Cummins, K. W. 1974. Leaf processing in a woodland stream. Freshwater Biol. 4:343–368.

    Google Scholar 

  • Raymond, M. 1993. PROBIT CNRS-UMII. Licence L93019. Avenix, 24680 St-Georges-d'Orques, France.

  • Rey, D., Marigo, G., and Pautou, M. P. 1996. Composés phénoliques chez Alnus glutinosa et contrÔle des populations larvaires de Culicidae. C.R. Acad. Sci. Paris, Sci. Vie 319:1035–1042.

    Google Scholar 

  • Rey, D., Cuany, A., Marigo, G., Hougard, J. M., Bissan, Y., Kone, Y., Pautou, M. P., Long, A., and Meyran, J. C. 1998a. Alder-mosquito interactions in alpine hydrosystems: Possible applications in dipteran pest control. Acta Parasitol. Port. 5:40.

    Google Scholar 

  • Rey, D., Long, A., Pautou, M. P., and Meyran, J. C. 1998b. Comparative histopathology of Bacillus thuringiensis var israelensis on some dipteran larvae and Crustacea of aquatic hydrosystems. Entomol. Exp. Appl. 8:255–263.

    Google Scholar 

  • Rey, D., Pautou, M. P., and Meyran, J. C. 1999a. Histopathological effects of tannins on the midgut epithelium of aquatic Diptera larvae. J. Invertebr. Pathol. 73:173–181.

    Google Scholar 

  • Rey, D., Cuany, A., Pautou, M. P., and Meyran, J. C. 1999b. Differential sensitivity of mosquito taxa against vegetable tannins. J. Chem. Ecol. 25:537–548.

    Google Scholar 

  • Scriber, J. M., Lindroth, R. L., and Nitao, J. 1989. Differential toxicity of a phenolic glycoside from quaking aspen leaves by Papilio glaucus subspecies, their hybrids, and backcrosses. Oecologia 81:186–191.

    Google Scholar 

  • Schofield, J. A., Hagerman, A. E., and Harold, A. 1998. Loss of tannins and other phenolics from willow leaf litter. J. Chem. Ecol. 24:1409–1421.

    Google Scholar 

  • Stafford, H. A. 1964. Comparison of lignin-like products found naturally or induced in tissues of Phleum, Elodea and Coleus and in paper peroxidase system. Plant Physiol. 39:350–360.

    Google Scholar 

  • Steinly, B. A., and Berenbaum, M. 1985. Histopathological effects of tannins on the midgut epithelium of Papilio polyxenes and Papilio glaucus. Entomol. Exp. Appl. 39:3–9.

    Google Scholar 

  • Wainhouse, D., Ashburner, R., Ward, E., and Boswell, R. 1998. The effect of lignin and bark wounding on susceptibility of spruce to Dendroctonus micans. J. Chem. Ecol. 24:1551–1561.

    Google Scholar 

  • Wallace, G., and Fry, C. 1994. Phenolic components of the plant cell wall. Int. Rev. Cytol. 151:229–267.

    Google Scholar 

  • Who, 1981. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. WHO ?VBC ?81, 807. World Health Organization, Geneva.

    Google Scholar 

  • Wright, H. E. 1962. The phenolics of tobacco and their significance, pp. 39–58, in V. C. Runeckles (ed.). Plant Phenolics and Their Industrial Significance. Proceedings of a Symposium of the Plant Phenolic Group of North America.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, JP., Rey, D., Marigo, G. et al. Larvicidal Effect of a Cell-Wall Fraction Isolated from Alder Decaying Leaves. J Chem Ecol 26, 901–913 (2000). https://doi.org/10.1023/A:1005456124756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005456124756

Navigation