Skip to main content
Log in

Permeability Transition Pore Closure Promoted by Quinine

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrial membrane permeability transition induced byCa2+ is inhibited by quinine in a dose-dependent fashion.Competition experiments strongly suggest that quinine displacesCa2+ bound to the inner membrane. This is supported byexperiments showing that quinine inhibits Ca2+-dependent butnot Ca2+-independent mitochondrial swelling induced byphenylarsine oxide. As with Ca2+ chelators, quinine inducespermeability transition pore closure preventing the contraction induced bypoly(ethylene glycol) 2000 in mitochondria preswollen by incubation in KSCNmedium containing Ca2+ and inorganic phosphate. These resultssuggest that quinine dislodges Ca2+ bound to the protein site,which triggers pore opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Bernardi, P., Broekemeier, K. M., and Pfeiffer, D. R. (1994). J. Bioenerg. Biomembr. 26, 509–517.

    Google Scholar 

  • Berridge, M. J. (1997). J. Physiol. 499, 291–306.

    Google Scholar 

  • Bradham, C. A., Qian, T., Streetz, K., Trautwein, C., Brenner, D. A., and Lemasters, J. J. (1998). Mol. Cell. Biol. 18, 6353–6364.

    Google Scholar 

  • Castilho, R. F., Kowaltowski, A. J., Meinicke, A. R., and Vercesi, A. E. (1995). Free Radical Biol. Med. 18, 479–486.

    Google Scholar 

  • Chernyak, B. V. and Bernardi, P. (1996). Eur. J. Biochem. 238, 623–630.

    Google Scholar 

  • Glavinovich, M. I. and Trifaro, J. M. (1988). J. Physiol. 399, 139–152.

    Google Scholar 

  • Greene, E. L. and Paller, M. S. (1994). Am. J. Physiol. 266, F13–F20.

    Google Scholar 

  • Gunter, T. E. and Pfeiffer, D. R.(1990). Am. J. Physiol. 258, C755–C786.

    Google Scholar 

  • Halestrap, A. P., Quinlan, P. T., Wipps, D. E., and Armston, A. E. (1986). Biochem. J. 236, 779–787.

    Google Scholar 

  • Halestrap, A. P., Woodfield, K. Y., and Connern, C. P. (1997). J. Biol. Chem. 272, 3346–3354.

    Google Scholar 

  • Haworth, R. A. and Hunter, D. R. (1979). Arch. Biochem. Biophys. 195, 460–467.

    Google Scholar 

  • Imberti, R., Nieminen, A.-L., Herman, B., and Lemasters, J. J. (1992). Res. Commun. Chem. Pathol. Pharmacol. 78, 27–38.

    Google Scholar 

  • Jensen, B. D., Gunter, K. K., and Gunter, T. E. (1986). Arch. Biochem. Biophys. 248, 305–323.

    Google Scholar 

  • Kamo, N., Muratsugu, N., Hongoh, R., and Kobatake, Y. (1977). J. Membr. Biol. 49, 105–121.

    Google Scholar 

  • Kowaltowski, A. J. and Castilho, R. F. (1997). Biochim. Biophys. Acta 1322, 14221–229.

    Google Scholar 

  • Kowaltowski, A. J., Vercesi, A. E., and Castilho, R. F. (1997). Biochim. Biophys. Acta 1318, 395–402.

    Google Scholar 

  • Kowaltowski, A. J., Naia-da-Silva, E. S., Castilho, R. F., and Vercesi, A. E. (1998) Arch. Biochem. Biophys. 359, 77–81.

    Google Scholar 

  • Lenartowics, E., Bernardi, P., and Azzone, G. F. (1991). J. Bioenerg. Biomembr. 23, 679–688.

    Google Scholar 

  • Low, P. S., Lloyd, D. H., Stein, T. M., and Rogers, J. A., III (1979). J. Biol. Chem. 254, 4119–4125.

    Google Scholar 

  • Mancilla, E. and Rojas, E. (1990). FEBS Lett. 260, 105–108.

    Google Scholar 

  • Marzo, I., Brenner, C., Zamzami, N., Jügensmeier, J. M., Susin, S. A., Vieira, H. L. A., Prévost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G. (1998). Science 281, 2027–2031.

    Google Scholar 

  • Miyata, H., Silverman, H. S., Sollot, S. J., Lakatta, E. G., Stern, M. D., and Hansford, R. G. (1991). Am. J. Physiol. 261, H1123–H1134.

    Google Scholar 

  • Nieminem, A.-L., Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J. (1995). Biochem. J. 307, 99–106.

    Google Scholar 

  • Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993). Science 262, 744–747.

    Google Scholar 

  • Simon, W., Ammann, D., Oehme, M., and Morf, W. E. (1978). Ann. N.Y. Acad. Sci., 307, 52–70.

    Google Scholar 

  • Skulachev, V. P. (1996). FEBS Lett. 397, 7–10.

    Google Scholar 

  • Vercesi, A. E., Kowaltowski, A. J., Grijalba, M. T., Meinicke, A. R., and Castilho, R. F. (1997). Biosci. Rept. 17, 43–52.

    Google Scholar 

  • Vercesi, A. E., Ferraz, V. L., Macedo, D. V., and Fiskum, G. (1988). Biochem. Biophys. Res. Commun. 154, 934–941.

    Google Scholar 

  • Zoratti, M. and Szabö, I. (1995) Biochim. Biophys. Acta 1241, 139–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibal E. Vercesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catisti, R., Vercesi, A.E. Permeability Transition Pore Closure Promoted by Quinine. J Bioenerg Biomembr 31, 153–157 (1999). https://doi.org/10.1023/A:1005455912711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005455912711

Navigation