Skip to main content
Log in

Macaque Pterygoid Muscles: Internal Architecture, Fiber length, and Cross-Sectional Area

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS), a proxy for muscle force. I dissected 36 medial pterygoid and 36 lateral pterygoid muscles from 30 adult females of 3 macaque species (Macaca fascicularis, M. mulatta, M. nemestrina) using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in muscle architecture or fiber length. Fiber length does not scale with body size (mass) for either total pterygoid muscle or for medial pterygoid muscle mass. However, fiber length scales weakly with lateral pterygoid muscle mass. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Medial pterygoid PCS scales isometrically with body size; larger animals have greater force production capabilities. Medial and lateral pterygoid PCS scale positively allometrically with facial size; individuals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masticatory muscles in longer-faced macaques. PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus, predictions of muscle force from bone parameters will entail large margins of error and should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Antón, S. C. (1990). Neandertals and the anterior dental loading hypothesis: A biomechanical evaluation of bite force production. Kroeber Anthropol. Soc. Papers 71-72: 67-76.

    Google Scholar 

  • Antón, S. C. (1994a). Masticatory Muscle Architecture and Bone Morphology in Primates, PhD dissertation, Department of Anthropology, University of California, Berkeley.

    Google Scholar 

  • Antón, S. C. (1994b). Mechanical and other perspectives on Neandertal craniofacial morphology. In Corruccini, R. S., and Ciochon, R. L (eds.), Integrative Pathways to the Past: Paleoanthropological Advances in Honor of F. Clark Howell. Prentice Hall, New Jersey, pp. 677-695.

    Google Scholar 

  • Antón, S. C. (1996a). Cranial adaptation to a high attrition diet in Japanese macaques. Int. J. Primatol. 17: 401-427.

    Google Scholar 

  • Antón, S. C. (1996b). Tendon-associated bone features of the masticatory system in Neandertals. J. Hum. Evol. 31: 391-408.

    Google Scholar 

  • Antón, S. C. (1999). Macaque masseter muscle: Internal architecture, fiber length, and crosssectional area. Int. J. Primatol. 20: 441-462.

    Google Scholar 

  • Bernstein, I. S. (1967). A field study of the pigtail monkey (Macaca nemestrina). Primates 8: 217-228.

    Google Scholar 

  • Bouvier, M. (1986). A biomechanical analysis of mandibular scaling in Old World monkeys. Am. J. Phys. Anthrop. 69: 474-482.

    Google Scholar 

  • Bouvier, M., and Tsang, S. M. (1990). Comparison of muscle mass and force ratios in New and Old World monkeys. Am. J. Phys. Anthrop. 82: 509-515.

    Google Scholar 

  • Buchner, H. (1877). Kritische und experimentelle Studien ueber den Zusammenhalt des Hueftgelenks waehrend des Lebens in allen normalen Faellen. Arch. Anat. Physiol. 1877: 22-45.

    Google Scholar 

  • Cachel, S. M. (1979). A functional analysis of the primate masticatory system and the origin of the anthropoid post-orbital septum. Am. J. Phys. Anthrop. 50: 1-18.

    Google Scholar 

  • Cachel, S. M. (1984). Growth allometry in primate masticatory muscles. Archs. Oral Biol. 29: 287-293.

    Google Scholar 

  • Carlsoo, S. (1952). Nervous coordination and mechanical function of mandibular elevators: An electromyographic study of the activity and anatomic analysis of the mechanics of the muscles. Acta Odont. Scand. Suppl 11.

  • Cheverud, J. M. (1981). Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthrop. 56: 157-167.

    Google Scholar 

  • Crockett, C. M., and Wilson, W. L. (1980). The ecological separation of Macaca nemestrina and M. fascicularis. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior, and Evolution, Van Nostrand Reinhold, San Francisco, pp. 148-181.

    Google Scholar 

  • Cronin, J. E., Cann, R., and Sarich, V. M. (1980). Molecular evolution and systematics of the genus Macaca. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior, and Evolution, Van Nostrand Reinhold, San Francisco, pp.31-51.

    Google Scholar 

  • Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus. Am. J. Phys. Anthrop. 80: 91-106.

    Google Scholar 

  • Dechow, P. C. and Carlson, D. S. (1990). Occlusal force and craniofacial biomechanics during growth in Rhesus monkeys. Am. J. Phys. Anthrop. 83: 219-237.

    Google Scholar 

  • Demes, B., and Creel, N. (1988). Bite force, diet, and cranial morphology of fossil hominids. J. Hum. Evol. 17: 657-670.

    Google Scholar 

  • Demes, B., Creel, N., and Preuschoft, H. (1986). Functional significance of allometric trends in the hominoid masticatory apparatus. In Else, J. G. and Lee, P. C. (eds.), Primate Evolution, Plenum Press, New York, pp. 369-390.

    Google Scholar 

  • Emerson, S. B., and Radinsky, L. B. (1980). Functional analysis of sabertooth cranial morphology. Paleobiology 6: 295-312.

    Google Scholar 

  • Gans, C. (1982). Fiber architecture and muscle function. Exerc. Sport Sci. Rev. 10: 160-207.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973a). Organisation architecturale et texture du muscle masséter chez les Primates et l'homme. J. Biol. Buccale 1: 7-20.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973b). Organisation architecturale du muscle temporal et des faisceaux de transition du complexe temporo-massétérin chez les Primates et l'homme. J. Biol. Buccale 1: 171-196.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973c). Organisation architecturale et texture des muscles ptérygoýdiens chez les Primates supe´ rieurs. J. Biol. Buccale 1: 215-233.

    Google Scholar 

  • Gaspard, M., Laison, F., and Mailland, M. (1973d). Organisation architecturale et texture des muscles ptérygoýdiens chez l'homme. J. Biol. Buccale 1: 353-366.

    Google Scholar 

  • Grant, P. G. (1973). Lateral pterygoid: Two muscles? Am. J. Anat. 138: 1-9.

    Google Scholar 

  • Hatcher, D. C., Faulkner, M. G., and Hay, A. (1986). Development of mechanical and mathematical models to study temporomandibular joint loading. J. Prosthet. Dent. 55: 377-384.

    Google Scholar 

  • Hiiemae, K. M. (1971). The structure and function of the jaw muscles in the rat (Rattus norvegicus L.): III. The mechanics of the muscles. Zool. J. Linneas Soc. 50: 111-132.

    Google Scholar 

  • Hill, W. C. O. (1974). Primates: Comparative Anatomy and Taxonomy VII: Cynopithecinae, Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Honee, G. L. J. M. (1972). The anatomy of the lateral pterygoid muscle. Acta Morphol. Neerl-Scand. 10: 331-340.

    Google Scholar 

  • Hylander, W. L. (1975). The human mandible: Lever or link? Am. J. Phys. Anthrop. 43: 227-242.

    Google Scholar 

  • Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling. Am. Zool. 25: 315-330.

    Google Scholar 

  • Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of ''robust'' australopithecine jaws. In Grine, F. E. (ed.), Evolutionary History of the ''Robust'' Australopithecines, Aldine de Gruyter, New York, pp. 55-83.

    Google Scholar 

  • Iwamoto, M. (1967). Morphological studies of Macaca fuscata: VI. Somatometry. Primates 8: 217-228.

    Google Scholar 

  • Kallfelz-Klemish, C. F., and Franciscus, R. G. (1997). Static bite force production in Neandertals and modern humans. Am. J. Phys. Anthrop. Suppl. 24: 140 (abstract).

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. Am. J. Phys. Anthrop. 43: 195-216.

    Google Scholar 

  • Koolstra, J. H., van Eijden, T. M. G. J., Weijs, W. A., and Naeije, M. (1988). A threedimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J. Biomech. 21: 563-576.

    Google Scholar 

  • Loeb, G. E., and Gans, C. (1986). Electromyography for Experimentalists, University of Chicago Press, Chicago.

    Google Scholar 

  • McNamaraa, J. A., Jr. (1973). The independent functions of the two heads of the lateral pterygoid muscle. Am. J. Anat. 138: 197-205.

    Google Scholar 

  • Morales, J. C., and Melnick, D. J. (1998). Phylogenetic relationships of the macaques (Cercopithecidae: Macaca) as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J. Hum. Evol. 34: 1-23.

    Google Scholar 

  • Nozawa, K., Shotake, T., Ohkura, Y., and Tanabe, Y. (1977). Genetic variations within and between species of Asian macaques. Jpn. J. Genet. 52: 15-30.

    Google Scholar 

  • Preuschoft, H., Demes, B., Meyer, M., and Bar, H. F. (1986). The biomechanical principles realised in the upper jaw of long-snouted primates. In Else, J. G., and Lee, P. C. (eds.), Primate Evolution, Cambridge University Press, New York, pp. 249-264.

    Google Scholar 

  • Prychodko, W., Goodman, M., Singal, B. M., Wess, M. L., Ishimoto, G., and Tanaka, T. (1971). Starch-gel electrophoretic variants of erythrocyte 6-phosphogluconate dehydrogenase in Asian macaques. Primates 12: 175-182.

    Google Scholar 

  • Radinsky, L. (1981). Evolution of skull shape in carnivores: 1. Representative modern carnivores. Biol. J. Linn. Soc. 15: 369-388.

    Google Scholar 

  • Radinsky, L. (1984). Ontogeny and phylogeny in horse skull evolution. Evolution 38: 1-15.

    Google Scholar 

  • Rak, Y., Kimbel, W. H., and Hovers, E. (1994). A Neandertal infant from Amud Cave, Israel. J. Hum. Evol. 26: 313-324.

    Google Scholar 

  • Ravosa, M. J. (1996). Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17: 909-932.

    Google Scholar 

  • Rodman, P. S. (1991). Structural differentiation of microhabitats of sympatric Macaca fascicularis and M. nemestrina in East Kalimantan, Indonesia. Int. J. Primatol. 12: 357-375.

    Google Scholar 

  • Scapino, R. P. (1981). Morphological investigation into functions of the jaw symphysis in carnivorans. J. Morphol. 167: 339-375.

    Google Scholar 

  • Schumacher, G. H. (1961). Funktionelle Morphologie der Kaumuskulatur, VEB Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Takahashi, L. K., and Pan, R. (1994). Mandibular morpholometrics among macaques: The case of Macaca thibetana. Int. J. Primatol. 15: 597-621.

    Google Scholar 

  • Tanabe, Y., Ogawa, M., and Nozawa, K. (1974). Polymorphism of thyroxine-binding prealbumin (TBPA) in primate species. Jpn. J. Gen. 49: 265-273.

    Google Scholar 

  • Tattersall, I. (1973). Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates). Am. Mus. Nat. Hist. Anthrop. Papers 52: 1-110.

    Google Scholar 

  • Throckmorton, G. S., and Throckmorton, L. S. (1985). Quantitative calculations of temporomandibular joint reaction forces: I. The importance of the magnitude of the jaw muscle forces. J. Biomech. 18: 445-452.

    Google Scholar 

  • Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana Geol. 18: 1-356.

    Google Scholar 

  • Van Eijden, T. M. G. J., Koolstra, J. H., and Brugman, P. (1995). Architecture of the human pterygoid muscles. J. Dent. Res. 74: 1489-1495.

    Google Scholar 

  • Vinyard, C. J., and Ravosa, M. J. (1998). Ontogeny, function, and scaling of the mandibular symphysis in Papionin Primates. J. Morph. 235: 157-175.

    Google Scholar 

  • Weber, E. F. (1846). Ueber die laegenverhaeltnisse der Fleischfasern der Muskeln im Allgemeinen. Berichte ueber die Verhandlungen der koeniglich saechisichen Gesselschaft der Wissenschaften zu Leipsig. Mathematische-Physische Classe; II: 63.

    Google Scholar 

  • Weidenreich, F. (1936). The mandibles of Sinanthropus pekinensis: A comparative study. Palaeontol. Sinica D 7 (4).

  • Weijs, W. A., and Dantuma, R. (1975). Electromyography and mechanics of mastication in the albino rat. J. Morphol. 146: 1-34.

    Google Scholar 

  • Weiss, M. L., Goodman, M., Prychodko, W., and Tanaka, T. (1971). Species and geographic distribution patterns of the macaque prealbumin polymorphism. Primates 12: 75-80.

    Google Scholar 

  • Weiss, M. L., Goodman, M., Prychodko, W., Moore, G. W., and Tanaka, T. (1973). An analysis of macaque systematics using gene frequency data. J. Hum. Evol. 2: 213-226.

    Google Scholar 

  • Wheatley, B. P. (1980). Feeding and ranging of East Bornean Macaca fascicularis. In Lindburg, D. G. (ed.), The Macaques: Studies in Ecology, Behavior, and Evolution, Van Nostrand Reinhold, San Francisco, pp. 215-246.

    Google Scholar 

  • Wood, B. (1991). Koobi Fora Research Project Volume 4,Hominid Cranial Remains, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antón, S.C. Macaque Pterygoid Muscles: Internal Architecture, Fiber length, and Cross-Sectional Area. International Journal of Primatology 21, 131–156 (2000). https://doi.org/10.1023/A:1005431831444

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005431831444

Navigation