Journal of Chemical Ecology

, Volume 26, Issue 5, pp 1151–1165 | Cite as

Inhibition of β-Glucosidase and Esterase by Tannins from Betula, Salix, and Pinus Species

  • Marja-Riitta Juntheikki
  • Riitta Julkunen-Tiitto
Article

Abstract

The reaction of tannin fractions isolated from the bark of Betula, Salix, and Pinus species with two enzymes, β-glucosidase and esterase, was investigated. The influence of precipitation to the hydrolytic capacity of β-glucosidase also was studied. All tannins studied precipitated β-glucosidase and esterase, and moderate differences in the precipitating capacities of the tannins were observed. Interestingly, complex formation between β-glucosidase and tannin did not markedly affect the activity of the enzyme. Therefore, complex formation during the insect/herbivore feeding does not necessarily change the defense activity of phenolic glycosides or decrease activity of digestive enzymes.

Betula Salix Pinus condensed tannins β-glucosidase esterase enzyme inhibition protein precipitation defense activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amory, A. M., and Schubert, C. L. 1987. A method to determine tannin concentration by the measurement and quantification of protein–tannin interactions. Oecologia 73:420–424.Google Scholar
  2. Ayres, M. P., Clausen, T. P., Maclean, S. F., Jr., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.Google Scholar
  3. Becker, P., and Martin, J. S. 1982. Protein-precipitating capacity of tannins in Shorea (Dipterocarpaceae) seedling leaves. J. Chem. Ecol. 8:1353–1367.Google Scholar
  4. Bernays, E. A., Cooper Driver, G., and Bilgener, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.Google Scholar
  5. Bradford, M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72:248–254.Google Scholar
  6. Butler, L. G., Price, M. L., and Brotherton, J. E. 1982. Vanillin assay for proanthocyanidins (condensed tannins): Modification of the solvent for estimation of the degree of polymerization. J. Agric. Food Chem. 30:1087–1089.Google Scholar
  7. Clausen, T. P., Reichardt, P. B., Bryant, J. P., WERNER, R. A., Post, K., and Frisby, K. 1989. Chemical model for short-term induction in quaking aspect (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15:2335–2346.Google Scholar
  8. Esen, A. 1993. α-Glucosidases: Overview, pp. 1–14, in A. Esen (ed.). β-Glucosidases: Biochemistry and Molecular Biology. American Chemical Society, Washington, D.C.Google Scholar
  9. Goldstein, W. S., and Spencer, K. C. 1985. Inhibition of cyanogenesis by tannins. J. Chem. Ecol. 11:847–858.Google Scholar
  10. Goldstein, J. L., and Swain, T. 1965. The inhibition of enzymes by tannins. Phytochemistry 4:185–192.Google Scholar
  11. Gopalan, V., Pastuszyn, A., Galey, W. R., JR., and Glew, R. H. 1992. Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic β-glucosidase. J. Biol. Chem. 267:14027–14032.Google Scholar
  12. GUYOT, S., Pellerin, P., Brillouet, J.-M., and Cheynier, V. 1996. Inhibition of β-glucosidase (Amygdalae dulces) by (+)-catechin oxidation products and procyanidin dimers. Biosci. Biotech. Biochem. 60:1131–1135.Google Scholar
  13. Hagerman, A. E. 1989. Chemistry of tannin-protein complexation, pp. 323–334, in R. W. Hemingway and J. J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.Google Scholar
  14. Hagerman, A. E., and Butler, L. G. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem.26:809–812.Google Scholar
  15. Haslam, E. 1974. Polyphenol-protein interactions. Biochem. J. 139:285–288.Google Scholar
  16. Julkunen-Tiitto, R. 1985. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33:213–217.Google Scholar
  17. Julkunen-Tiitto, R., and Meier, B. 1992. The enzymatic decomposition of salicin and its derivatives obtained from Salicaceae species. J. Nat. Prod. 55:1204–1212.Google Scholar
  18. Julkunen-Tiitto, R., Petersen, M., Meinhard, J., and Alferman, A. W. A. 1996. Characterization of novel salicin glucosyltranferase from willow (Salix sp.) cell cultures. International Symposium on Principles Regulating Biosynthesis and Storage of Secondary Products. Halle.Google Scholar
  19. Juntheikki, M.-R., Julkunen-tiitto, R., and Hagerman, A. E. 1996. Salivary tannin-binding proteins in root vole (Microtus oeconomus Pallas). Biochem. Syst. Ecol. 24:25–35.Google Scholar
  20. Kawamoto, H., Mizutani, K., and Nakatsubo, F. 1997. Binding nature and denaturation of protein during interaction with galloylglucose. Phytochemistry 46:473–478.Google Scholar
  21. Kolehmainen, J., Roininen, H., Julkunen-Tiitto, R., and TAHVANAINEN, J. 1994. Importance of phenolic glucosides in host selection of the shoot galling sawfly, Euura amerinae, on Salix pentandra. J. Chem. Ecol. 20:2455–2466.Google Scholar
  22. Kolodziej, H. 1989. Procyanidins from medicinal birch: bonding patterns and sequence of units in triflavonoids of mixed stereochemistry. Phytochemistry 28:3487–3492.Google Scholar
  23. Kolodziej, H. 1990. Oligomeric flavan-3-ols from medicinal willow bark. Phytochemistry 29:955–960.Google Scholar
  24. KÖph, A., Rank, N. E., Roininen, H., Julkunen-Tiitto, R., Pasteels, J. M., and Tahvanainen, J. 1998. Phylogeny and the evolution of host plant use and sequestration in the willow leaf beetle genus Phratora (Coleoptera: Chrysomelidae). Evolution 52:517–528.Google Scholar
  25. Kumar, R., and Horigome, T. 1986. Fractionation, characterization, and protein-precipitating capacity of the condensed tannins from Robinia pseudo acacia L. leaves. J. Agric. Food Chem. 34:487–489.Google Scholar
  26. Kumar, R., and Singh, M. 1984. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 32:447–453.Google Scholar
  27. Martin, J. S., and Martin, M. M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211.Google Scholar
  28. Matthews, S., Mila, I., Scalbert, A., and Donnelly, D. M. 1997. Extractable and non-extractable proanthocyanidins in barks. Phytochemistry 45:405–410.Google Scholar
  29. Ozawa, T., Lilley, T. H., and Haslam, E. 1987. Polyphenol interactions: Astringency and the loss of astringency in ripening fruit. Phytochemistry 26:2937–2942.Google Scholar
  30. Rank, N. E., KÖph, A., Julkunen-Tiitto, R., and Tahvanainen, J. 1998. Host performance and larval performance of the salicylate-using leaf beetle Phratora vitellinae. Ecology 79:618–631.Google Scholar
  31. Reichardt, P. B., Clausen, T. P., and Bryant, J. P. 1988. Phenol glycosides in plant defense against herbivores, pp. 130–142, in H. G. Cutler (ed.). Biologically Active Natural Products, Potential Use in Agriculture. American Chemical Society, Washington, D.C.Google Scholar
  32. Reichardt, P. B., Bryant, J. P., Mattes, B. R., Clausen, T. P., Chapin, F. S., III, and Meyer, M. 1990. Winter chemical defense of alaskan balsam poplar against snowshoe hares. J. Chem. Ecol. 16:1941–1959.Google Scholar
  33. Selmar, D. 1993. Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides, pp. 191–204, in A. Esen (ed.). β-Glucosidases: Biochemistry and Molecular Biology. American Chemical Society, Washington, D.C.Google Scholar
  34. Spencer, C. M., Cai, Y., Martin, R., Gaffney, S. H., Goulding, P. N., Magnolato, D., Lilley, T. H., and Haslam, E. 1988. Polyphenol complexation—some thoughts and observations. Phytochemistry 27:2397–2409.Google Scholar
  35. Tahvanainen, J., Helle, E., Julkunen-Tiitto, R., and Lavola, A. 1985. Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia 65:319–323.Google Scholar
  36. Waterman, P. G., and Mole, S. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford.Google Scholar
  37. Williams, V. M., Porter, L. J., and Hemingway, R. W. 1983. Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22:569–572.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Marja-Riitta Juntheikki
    • 1
  • Riitta Julkunen-Tiitto
    • 1
  1. 1.Department of BiologyUniversity of JoensuuJoensuuFinland

Personalised recommendations