Skip to main content
Log in

Occurrence of Volatile Nitrogen-containing Compounds in Nitrogen-fixing Cyanobacterium Aphanizomenon flos-aquae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The occurrence of volatile nitrogen-containing compounds in the cyanobacterium Aphanizomenon flos-aquae has been studied. Twenty compounds belonging to four groups—amides of carboxylic and fatty acids, heterocyclic compounds and their derivatives, aromatics, and alkoxyamines and amides were identified by gas chromatography–mass spectrometry that used serially coupled capillary columns with different polarity of stationary phases. Distribution of bioactive non-toxic and toxic nitrogen-containing metabolites in cyanobacteria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bandaranayke, W. M. 1998. Mycosporins: Are they nature's sunscreens? Nat. Prod. Report. 15:159–172.

    Google Scholar 

  • Banker, R., Carmeli, S., Hadas, O., Teltsch, B., Porat, R., and Sukenik, A. 1997. Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret, Israel. J. Phycol. 33:613–616.

    Google Scholar 

  • Bezuglov, V. V., Bobrov, M. Y., and Archakov, A. V. 1998. Bioactive amides of fatty acids. Biochemistry (Moscow) 63:27–37.

    Google Scholar 

  • Carmichael, W. W. 1986. Algal toxins. Adv. Bot. Res. 12:47–101.

    Google Scholar 

  • Carmichael, W. W. 1997. The cyanotoxins. Adv. Bot. Res. 27:211–256.

    Google Scholar 

  • Christoffersen, K. 1996. Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 36(Suppl. 6):42–50.

    Google Scholar 

  • Codd, G. A., and Poon, G. K. 1988. Cyanobacterial toxins, pp. 283–296, in L. J. Rogers and J. R. Gallon (eds.). Biochemistry of the Algae and Cyanobacteria, Clarendon Press, Oxford.

    Google Scholar 

  • Dembitsky, V. M., Shkrob, I., and Dor, I. 1999. Separation and identification of hydrocarbons and other volatile compounds from cultured blue-green alga Nostoc sp. by gas chromatography-mass chromatography using serially coupled capillary columns with consecutive nonpolar and semipolar stationary phases. J. Chromatogr. 682:221–229.

    Google Scholar 

  • Di Marzo, V. 1998. “Endocannabinoids” and other fatty acid derivatives with cannabimimetic properties: Biochemistry and possible physio-pathological relevance. Biochim. Biophys. Acta 1392:153–175.

    Google Scholar 

  • Falconer, I. R. 1994. Mechanism of toxicity of cyclic peptide toxins from blue-green algae, pp. 177–187, in I. R. Falconer (ed.). Algal Toxins in Seafood and Drinking Water. Academic Press, Cambridge.

    Google Scholar 

  • Herrmann, V., and JÜttner, F. 1977. Excretion products of algae. Identification of biogenic amines by gas-chromatography and mass spectrometry of their trifluoroacetamides. Anal. Biochem. 78:365–363.

    Google Scholar 

  • Ikawa, M., Wegener, K., Foxall, T. L., and Sasner, J. J., Jr. 1982. Comparison of the toxins of the blue-green alga Aphanizomenon flos-aquae with the Gonyaulax toxins. Toxicon 20:747–752.

    Google Scholar 

  • Ikawa, M., Sasner, J. J. Jr., Haney, J. F., and Foxall, T. L. 1995. Pterins of the cyanobacterium Aphanizomenon flos-aquae. Phytochemistry 38:1229–1232.

    Google Scholar 

  • JÜttner, F., and Wurster, K. 1979. Einfach Anordnung zur Adsorption von Geruchsstoffen aus Algen an Tenax GC und deren Uberfuh rung in Gaschromatographie-System. J. Chromatogr. 175:178–182.

    Google Scholar 

  • Murata, N., and Nishida, I. 1987. Lipids of blue-green algae (Cyanobacteria), pp. 315–347, in P. K. Stumf (ed.). The Biochemistry of Plants, Vol. 9. Academic Press, New York.

    Google Scholar 

  • Namikoshi, M., Sivonen, K., Evans, W. R., Sun, F., Carmichael, W. W., and Rinehart, K. L. 1992. Isolation and structures of microcystins from a cyanobacterial water bloom (Finland). Toxicon 30:1473–1479.

    Google Scholar 

  • Orjala, J., Nagle, D., and Gerwick, W. H. 1995. Malyngamide H, an ichthyotoxic amide possessing a new carbon skeleton from the Caribbean cyanobacterium Lyngbya majuscula. J. Nat. Prod. 58:764–768.

    Google Scholar 

  • Paerl, H. W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35(Suppl. 6):25–35.

    Google Scholar 

  • Patterson, G. M., Larsen, L. K., and Moore, R. E. 1994. Bioactive natural products from bluegreen algae. J. Appl. Phycol. 6:151–157.

    Google Scholar 

  • Paul, V. J. 1992. Ecological Roles of Marine Products. Comstock Publ., Ithaca, New York.

    Google Scholar 

  • Pennings, S. C., Weiss, A. M., and Paul, J. J. 1996. Secondary metabolites of the cyanobacterium Microcoleus lyngbyaceus and the sea hare Stylocheilus longicauda: Palatability and toxicity. Mar. Biol. 126:735–743.

    Google Scholar 

  • Plinski, M., and Codd, G. A. 1997. Cyanobacteria—a factor of animal intoxification: A review. Medyc. Weteryn. 53:8–10.

    Google Scholar 

  • Sellner, K. G. 1997. Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol. Oceanogr. 42:1089–1104.

    Google Scholar 

  • Shimizu, Y. 1993. Microalgal metabolites. Chem. Rev. 93:1685–1698.

    Google Scholar 

  • Sivonen, K. 1996. Cyanobacterial toxins and toxin production. Phycologia 35(Suppl 6):12–24.

    Google Scholar 

  • Slater, G. P., and Block, V. C. 1983. Volatile compounds of the cyanophyceae—a review. Water Sci. Tech. 15:181–190.

    Google Scholar 

  • Teuscher, E., Lindequist, U., and Mundt, S. 1992. Blue-green algae, sources of natural active agents. Pharm. Ztg. Wiss. 137:57–69.

    Google Scholar 

  • Thacker, R. W., Nagle, D. G., and Paul, V. J. 1997. Effects of repeated exposures to marine cyanobacterial secondary metabolites on feeding by juvenile rabbitfish and parrotfish. Mar. Ecol. Prog. Ser. 147:21–29.

    Google Scholar 

  • Todd, J. S., and Gerwick, W. H. 1995. Malyngamide I from the tropical marine cyanobacterium Lyngbya majuscula and the probable structure revision of stylocheilamide. Tetrahedron Lett. 36:7837–7840.

    Google Scholar 

  • Tsuchiya, Y., Shudo, K., and Okamoto, T. 1979. Odorous compounds of the blue green algae Oscillatoria sp., and river water. Identification of 2-methyl-isoborneol, geosmin, p-cresol, indole, and 3-methyl-indole. Eisei Kagaki 25:216–220.

    Google Scholar 

  • Tsuchiya, Y., Matsumoto, A., and Okamoto, T. 1981. Identification of volatile metabolites produced by blue-green algae, Oscillatoria splendida, O. amoena, O. geminata, and Aphanizomenon species. J. Pharm. Soc. Jpn. Yakugaku Zasshi 101:852–856.

    Google Scholar 

  • Underdal, B. 1995. Water pollution-health aspects. Norsk Vet. Tidsskr. 107:377–383.

    Google Scholar 

  • Weckesser, J., Martin, C., and Jakobi, C. 1996. Cyanopeptolins, depsipeptides from cyanobacteria. Syst. Appl. Microbiol. 19:133–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembitsky, V.M., Shkrob, I. & Lev, O. Occurrence of Volatile Nitrogen-containing Compounds in Nitrogen-fixing Cyanobacterium Aphanizomenon flos-aquae. J Chem Ecol 26, 1359–1366 (2000). https://doi.org/10.1023/A:1005423406140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005423406140

Navigation