Journal of Bioenergetics and Biomembranes

, Volume 31, Issue 3, pp 191–200 | Cite as

Structural Basis of Multifunctional Bovine Mitochondrial Cytochrome bc1 Complex

  • Chang-An Yu
  • Hua Tian
  • Li Zhang
  • Kai-Ping Deng
  • Sudha K. Shenoy
  • Linda Yu
  • Di Xia
  • Hoeon Kim
  • Johann Deisenhofer
Article

Abstract

The mitochondrial cytochrome bc1 complex is a multifunctional membrane protein complex. Itcatalyzes electron transfer, proton translocation, peptide processing, and superoxide generation.Crystal structure data at 2.9 Å resolution not only establishes the location of the redox centersand inhibitor binding sites, but also suggests a movement of the head domain of the iron–sulfurprotein (ISP) during bc1 catalysis and inhibition of peptide-processing activity during complexmaturation. The functional importance of the movement of extramembrane (head) domain ofISP in the bc1 complex is confirmed by analysis of the Rhodobacter sphaeroides bc1 complexmutants with increased rigidity in the ISP neck and by the determination of rate constants foracid/base-induced intramolecular electron transfer between [2Fe–2S] and heme c1 in nativeand inhibitor-loaded beef complexes. The peptide-processing activity is activated in bovineheart mitochondrial bc1 complex by nonionic detergent at concentrations that inactivate electrontransfer activity. This peptide-processing activity is shown to be associated with subunits Iand II by cloning, overexpression and in vitro reconstitution. The superoxide-generation siteof the cytochrome bc1 complex is located at reduced bL and Q•−. The reaction is membranepotential-, and cytochrome c-dependent.

cytochrome bc1 complex electron transfer reaction: mitochondrial-processing peptidase superoxide-generation activity electron transfer inhibitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Boveris, A., Oshino, N., and Chance, B. (1972). Biochem. J. 128, 617–630.Google Scholar
  2. Brandt, U. (1998). Biochim. Biophys. Acta 1275, 41–46.Google Scholar
  3. Brandt, U. and Okun, J. U. (1997). Biochemistry 36, 11234–11240.Google Scholar
  4. Denke, E., Merbitz-Zahradnik, T., Hatzfeld, O., Snyder, C. H., Link, T. A., and Trumpower, B. L. (1998). J. Biol. Chem 273, 9085–9093.Google Scholar
  5. Deng, K.-P, Zhang, L., Kachurin, A. M., Yu, L., Xia, D., Deisenhofer, J., and Yu, C. A. (1998). J. Biol. Chem. 273, 20752–20757.Google Scholar
  6. Huang, T. (1993). Ph.D. Thesis, Institute of Zoology, Academia Sinca, Beijing, China.Google Scholar
  7. Iwata, S., Saynovits, M., Link, T. A., and Michel, H. (1996). Structure 4, 567–579.Google Scholar
  8. Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S. and Jap, B. K. (1998). Science 281, 64–71.Google Scholar
  9. Jünemann, S., Heathcote, P., and Rich, P. R. (1998). J. Biol. Chem, 273, 21603–21607.Google Scholar
  10. Kim, H., Xia, D., Yu, C. A., Kachurin, A., Zhang, L. Yu, L., and Deisenhofer, J. (1998). Proc. Natl. Acad. Sci. U.S. 95, 8026–8033.Google Scholar
  11. Link, T. A. and Iwata, S. (1996). Biochim. Biophys. Acta 1275, 54–60Google Scholar
  12. Mitchell, P. (1976). J. Theoret. Biol. 62, 327–367.Google Scholar
  13. Miki, T., Yu, L., and Yu, C. A. (1990). Biochemistry 30, 230–238.Google Scholar
  14. Ohnishi, T., Schagger, H., Meinhartdt, S. W., LoBrutto, R., Link, T. A., and von Jagow, G. (1989). J. Biol. Chem. 264, 735–744.Google Scholar
  15. Shenoy, S. K. Deng, K-P., Yu, L., and Yu, C. A. (1998). Biophys. J. 74, 197a.Google Scholar
  16. Tian, H., Yu, L., Mather, M W., and Yu, C. A. (1998). J. Biol. Chem. 273, 27953–27959.Google Scholar
  17. Tian, H., White, S., Yu, L., and Yu, C. A. (1999). J. Biol. Chem. 274, 7146–7152.Google Scholar
  18. Trumpower, B. L. (1990). J. Biol. Chem. 265, 11409–11412.Google Scholar
  19. Von Heijne, J., Steppuhn, J., and Herrmaan, R. G. (1989). Eur. J. Biochem. 180, 535–545.Google Scholar
  20. Ugulava, N. B., and Crofts, A. R. (1998). FEBS lett. 440, 409–413.Google Scholar
  21. Widger, W. R., Cramer, W. A., Herrmann, R. G., and Trebst, A. (1984). Proc. Natl. Acad. Sci. U.S. 81, 674–678.Google Scholar
  22. Xia, D., Yu, C. A., Kim, H., Xia, J.-Z, Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1997). Science 277, 60–66.Google Scholar
  23. Yu, C. A., Xia, J-Z., Kachurin, A. M., Yu, L., Xia, D., Kim, H., and Deisenhofer, H. (1996). Biochim. Biophys. Acta 1275, 47–53.Google Scholar
  24. Yu, C. A., Xia, D., Kim, H., Deisenhofer, J., Zhang. L., Kachurin, A. M., and Yu, L. (1998). Biochim. Biophys. Acta 1365, 151–158.Google Scholar
  25. Yue, W. H., Yu, L., and Yu, C. A. (1991). Biochemistry 30, 2303–230.Google Scholar
  26. Zhang, L.,. Yu, L., and Yu, C. A. (1988). J. Biol. Chem. 273, 33972–33976.Google Scholar
  27. Zhang, Z. L., Huang, L.-S., Shulmeister, V. M., Chi, Y-I., Kim, K. K., Huang, L.-W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998). Nature 392, 677–684.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Chang-An Yu
    • 1
  • Hua Tian
    • 1
  • Li Zhang
    • 1
  • Kai-Ping Deng
    • 1
  • Sudha K. Shenoy
    • 1
  • Linda Yu
    • 1
  • Di Xia
    • 2
  • Hoeon Kim
    • 2
  • Johann Deisenhofer
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater
  2. 2.The Howard Hughes Medical Institute and Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallas

Personalised recommendations