Skip to main content
Log in

Time, gravity and the exterior angle of parallelism

  • Published:
Speculations in Science and Technology

Abstract

Applying calculus to the horizontal and vertical unit hyperbolas we derive the obtuse exterior and the acute angle of parallelism formulas for the arc length of a unit circle. When the analogous arc length of a hyperbola is figured, we further define metric distance with radian measure. Employing a non-conventional velocity of light formula, we explain several aspects of physics with a logical geometry. The hyperbolic geometry Lobacevskii angle of parallelism is mathematically measured to agree with the physical measure, without using the gravitational constant, but rather the electromagnetic spectrum and geodesics. Space is hereby measured with units of radians and time. Half-angle formulas for slopes and boosts pertain to spinor algebra. The new light velocity is justified when its derivative results in Einstein's mass–energy formula. Relativity is reformulated with these half-angle formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asimov, I. (1965) Of Time, Space, and other things. New York: Discus of Avon.

    Google Scholar 

  2. Beltrami, E. (1868) Saggio di interpretazione della geometria non-Euclidean, Giornale di Mathematiche 6, 298(12).

    Google Scholar 

  3. Beyer, W.H. (1987) CRC Handbook of Mathematical Sciences. Boca Raton: CRC Press.

    Google Scholar 

  4. Bolyai, J. (1987) Appendix, the Theory of Space, North-Holland Math. Studies, vol. 138, Amsterdam.

  5. Busemann, H. (1950) Non-Euclidean geometry, Math. Mag. 24(9), 19–34.

    Google Scholar 

  6. Chrystal, G. (1931) Algebra. II, Black, London.

    Google Scholar 

  7. Coxeter, H.S.M. (1961) Introduction to Geometry, 2nd ed. New York: John Wiley.

    Google Scholar 

  8. Coxeter, H.S.M. (1996) Non-Euclidean Geometry, 6th ed. Toronto: Univ. Toronto Press.

    Google Scholar 

  9. Coxeter, H.S.M. (1978) Parallel lines, Canad. Math. Bull. 21(4), 385–397.

    Google Scholar 

  10. Einstein, A. (1957) Relativity, the Special and the General Theory, 15th ed. London: Methuen.

    Google Scholar 

  11. Eskew, R.C. (1989) Relating a circle and a hyperbola, J. Undergrad. Math. 21(2), Guilford College, Greensboro, 49–54.

    Google Scholar 

  12. Gauss, C.F. (1899) Briefwechsel Zwischen Carl Friedrich Gauss und Wolfgang Bolyai, Leipzig.

  13. Halliday, D., Resnick, R. and Walker, J. (1997) Fundamentals of Physics. New York: John Wiley.

    Google Scholar 

  14. Hawking, S.W. (1988) A brief history of time. Toronto: Bantam Books.

    Google Scholar 

  15. Iaglom, I.M. (1969) A Simple non-Euclidean Geometry and its Physical basis, Nauka, Moscow (Russian); English transl., 1979, New York: Springer-Verlag.

    Google Scholar 

  16. Kagan, V. (1957) N. Lobachevsky and His Contribution to Science. Moscow: Foreign Languages Publishing House.

    Google Scholar 

  17. Lobachevskii, N.I. (1840) Geometrical researches on the theory of parallels. Karzan, Berlin (Russian); English transl., 1891, Austin: Univ. Texas Press.

    Google Scholar 

  18. Lorentz, H.A. (1923) The Principle of Relativity. New York: Dover.

    Google Scholar 

  19. Martin, G.E. (1972) The Foundations of Geometry and the non-Euclidean Plane. New York: Intext Educational.

    Google Scholar 

  20. Millman, R.S. and Parker, G.D. (1981) Geometry, a Metric Approach with Models. New York: Springer-Verlag.

    Google Scholar 

  21. Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1970) Gravitation. San Francisco: W.H. Freeman and Co.

    Google Scholar 

  22. Morgan, F. (1993) Riemannian Geometry, a Beginner's Guide. Boston: Jones and Bartlett.

    Google Scholar 

  23. Poincaré, H. (1921) Des fondements de la geometrie. Paris.

  24. Saccheri, G. (1733) Euclides ab omni naevo vindicatus.

  25. Schutz, B. (1985) A First Course in General Relativity. Cambridge: Cambridge University Press.

    Google Scholar 

  26. Taylor, E.F. and Wheeler, J.A. (1963) Spacetime Physics. San Francisco: W.H. Freeman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskew, R.C. Time, gravity and the exterior angle of parallelism. Speculations in Science and Technology 21, 213–225 (1998). https://doi.org/10.1023/A:1005401228301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005401228301

Navigation