Skip to main content
Log in

Theoretical Ideas of the XX century for describing electromagnetism

  • Published:
Speculations in Science and Technology

Abstract

Quantum electrodynamics is a well-accepted theory. But, we believe it useful to look at formalisms which provide alternative ways to describe light, because the development of quantum field theories based primarily on the gauge principle have, in recent years, met with considerable difficulties. There are numerous generalized theories and, mainly, they are characterized by introducing some additional parameters and/or longitudinal modes of electromagnetism. The Majorana–Oppenheimer form of electrodynamics, the Sachs' theory of Elementary Matter, the analysis of the action-at-a-distance concept, presented recently by Chubykalo and Smirnov-Rueda, and the analysis of the claimed ‘longitudinality’ of the anti–symmetric tensor field after quantization are examined in this article. We list also recent advances in the Weinberg 2(2J+1) formalism (which is built on first principles) and in the Majorana theory for neutral particles. They can serve as starting points for constructing the quantum theory of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dvoeglazov, V.V., Tyukhtyaev, Yu.N., and Faustov, R.N. (1993) Mod. Phys. Lett. A8, 3263; (1994) Fiz. Elem. Chast. At. Yadra 25, 144 [English translation: Phys. Part. Nucl. 25 58].

    Google Scholar 

  2. Whittaker, E. (1973) A History of the Theories of Aether and Electricity, New York; Humanites Press.

    Google Scholar 

  3. Chubykalo, A.E., and Smirnov-Rueda, R. Mod. Phys. Lett. A12 (1997), 1

    Google Scholar 

  4. Dirac, P.A.M. (1978) in Mathematical Foundations of Quantum Theory, A.R. Marlow, (ed.). Academic Press, p. 1; (1978) in Directions in Physics, H. Hora and J.R. Shepanski (eds.). New York: J. Wiley and Sons, p. 32.

  5. Landau, L.D. (1955) in Niels Bohr and the Development of Physics, London: Pergamon Press.

    Google Scholar 

  6. Pauli, W. (1980) General Principles of Quantum Mechanics, Berlin: Springer, Section 27.

    Google Scholar 

  7. Barut, A.O. (1980) Electrodynamics and Classical Theory of Fields and Particles, New York: Dover.

    Google Scholar 

  8. Einstein, A., et al. (1958) The Principle of Relativity, New York: Dover — reprints of original papers.

    Google Scholar 

  9. Wigner, E.P. (1939) Ann. Math. 40 149; (1965) in Group Theoretical Concepts and Methods in Elementary Particle Physics — Lectures of the Istanbul Summer School of Theoretical Physics, 1962, F. Gürsey (ed.), New York: Gordon &Breach, p. 37.

    Google Scholar 

  10. Ahluwalia, D.V., and Ernst, D.J. (1992) Mod. Phys. Lett. A7, 1967.

    Google Scholar 

  11. Ahluwalia, D.V. (1997) in The Present Status of the Quantum Theory of Light. S. Jeffers et al. (eds), Kluwer, pp. 443–457.

  12. Evans, M.W., and Vigier, J.-P. (1994–1996) Enigmatic Photon. Vols 1–3, Dordrecht: Kluwer Academic Publishers; the third volume with S. Roy and S. Jeffers.

    Google Scholar 

  13. Evans, M.W. (1995) Physica A214, 605.

    Google Scholar 

  14. Ahluwalia, D.V., and Ernst, D.J. (1993) Int. J. Mod. Phys. E2 397; D.V. Ahluwalia, M.B. Johnson and T. Goldman (1993) Phys. Lett. B316, 102.

    Google Scholar 

  15. Ahluwalia, D.V., and Sawicki, M. (1993) Phys. Rev. D47, 5161; (1994) Phys. Lett. B335, 24.

    Google Scholar 

  16. Ahluwalia, D.V. (1996) Int. J. Mod. Phys. A11, 1855.

    Google Scholar 

  17. Dvoeglazov, V.V. (1995) Int. J. Theor. Phys. 34 2467; (1995) Nuovo Cimento A108, 1467.

    Google Scholar 

  18. Oppenheimer, J.R. (1931) Phys. Rev. 38, 725.

    Google Scholar 

  19. Weinberg, S. (1964) Phys. Rev. B133, 1318; (1964) ibid. B134, 882; (1969) ibid. 181, 1893.

    Google Scholar 

  20. R. Mignani, E. Recami and M. Baldo (1974) Lett. Nuovo Cim. 11, 568; see also E. Gianetto (1985) Lett. Nuovo Cim. 44, 140.

    Google Scholar 

  21. Moshinsky, M., and Del Sol, A. (1994) Canadian J. Phys. 72, 453.

    Google Scholar 

  22. Imaeda, K. (1950) Prog. Theor. Phys. 5, 133.

    Google Scholar 

  23. Ohmura, T. (Kikuta) (1956) Prog. Theor. Phys. 16, 684, 685.

    Google Scholar 

  24. Dowker, J.S., and Dowker, Y.P. (1966) Proc. Roy. Soc. A294, 175; J.S. Dowker (1967) Proc. Roy. Soc. A297, 351.

    Google Scholar 

  25. Moses, H.E. (1959) Phys. Rev. 113, 1670.

    Google Scholar 

  26. Lyttleton, R.A., and Bondi, H. (1959) Proc. Roy. Soc. A252, 313; Ll.G. Chambers (1963) J. Math. Phys. 4, 1373.

    Google Scholar 

  27. Sachs, M. (1959) Ann. Phys. 6, 244; M. Sachs and S.L. Schwebel (1961) Nuovo Cim. Suppl. 21, 197; (1962) J. Math. Phys. 3, 843; M. Sachs (1980) Found. Phys. 10, 921

    Google Scholar 

  28. Sachs, M. (1982) General Relativity and Matter, Dordrecht: Reidel (1986) Quantum Mechanics from General Relativity, Dordrecht: Reidel.

    Google Scholar 

  29. Staruszkiewicz, A. (1983) Acta Phys. Polon. B14, 63; (1983) ibid. 14, 903; (1984) ibid. 15, 225.

    Google Scholar 

  30. Staruszkiewicz, A. (1982) Acta Phys. Polon. B13, 617; (1983) ibid. 14, 67; ibid. 15 945; (1990) ibid. 21, 891; (1990) ibid. 21, 897.

    Google Scholar 

  31. Fock, V.A., and Podolsky, B. (1931) Phys. Zeit. Sowjetun. 1, 801; (1932) ibid. 2, 275; P.A.M. Dirac, V. Fock and B. Podol'sky, in Selected Papers on Quantum Electrodynamics, J. Schwinger (ed.), New York: Dover.

    Google Scholar 

  32. Gersten, A. (1987) Preprints CERN-TH.4687/87, 4688/87, Geneva: CERN (1995) Ann. Fond. L. de Broglie 21, 67.

    Google Scholar 

  33. Barut, A.O. (1980) in Foundations of Radiation Theory and Quantum Electrodynamics, New York: Plenum, p. 165; (1985) A.O. Barut and J.F. Van Huele, Phys. Rev. A32, 3187; (1992) A.O. Barut et al., ibid. 45, 7740.

    Google Scholar 

  34. Staruszkiewicz, A. (1989) Ann. Phys. 190, 354; (1992) Acta Phys. Polon. 23, 591, 959E.

    Google Scholar 

  35. Horwitz, L.P. and Piron, C. (1973) Helv. Phys. Acta 46, 316; (1991) M.C. Land and L.P. Horwitz, Found. Phys. Lett. 4, 61; (1995) M.C. Land, N. Shnerb and L.P. Horwitz, J. Math. Phys. 36, 3263.

    Google Scholar 

  36. Horwitz, L.P. and Sarel, B. (1995) A chiral spin theory in the framework of an invariant evolution parameter formalism. Preprint TAUP-2280–95, Tel Aviv; (1995) M.C. Land and L.P. Horwitz, Off-shell quantum electrodynamics. Preprint TAUP-2227–95, Tel Aviv.

  37. Horwitz, L.P. (1996) Time and evolution of states in relativistic classical and quantum mechanics. Preprint IASSNS-HEP-96/59, Princeton.

  38. Stueckelberg, E.C.G. (1941) Helv. Phys. Acta 14, 372, 588; (1942) ibid. 15, 23.

    Google Scholar 

  39. Dyson, F.J. (1990) Am. J. Phys. 58, 209.

    Google Scholar 

  40. Tanimura, S. (1992) Ann. Phys. 220, 229.

    Google Scholar 

  41. Kadyshevsky V.G. (1978) Nucl Phys. B141, 477; (1985) M.V. Chizhov et al., Nuovo Clim. 87A, 350; (1995) V.G. Kadyshevsky and D.V. Fursaev, A gauge model in the momentum space of the constant curvative. Preprint JINR, Dubna.

    Google Scholar 

  42. Chubykalo, A.E., and Smirnov-Rueda, R. (1996) Phys. Rev. E53 5373, Errata E55 (1997) 3793.

    Google Scholar 

  43. Belinfante, F.J. (1949) Phys. Rev. 76, 226; (1952) ibid. 85, 721.

    Google Scholar 

  44. Heitmann, W., and Nimtz, G. (1994) Phys. Lett. A196, 154; (1994) J. Phys. I France 4, 565.

    Google Scholar 

  45. Evans, M.W. (1996) Found. Phys. Lett. 9, 397.

    Google Scholar 

  46. Dvoeglazov, V.V. (1996) About the claimed ‘longitudinal nature’ of the antisymmetric tensor field after quantization. Preprint EFUAZ FT–95–16-REV (hep-th/9604148), Zacatecas.

  47. Han, D. Kim, Y.S., and Son, D. (1983) Phys. Lett. 131B, 327; (1996) Y.S. Kim, in Proceedings of the IV Wigner Symposium, Guadalajara, México, August 7–11, 1995, N.M. Atakishiyev, K.B. Wolf and T.H. Seligman (eds) World Scientific, p. 1.

    Google Scholar 

  48. Whittaker, E.T. (1903) Math. Ann. 57, 333; (1904) Proc. London Math. Soc., Series 2, 1, 367.

    Google Scholar 

  49. Dirac, P.A.M. (1949) Rev. Mod. Phys. 21, 392.

    Google Scholar 

  50. Ogievetski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{i} \) V.I., and Polubarinov, I.V. Polubarinov (1966) Yadern. Fiz. 4, 216 [English translation: (1967) Sov. J. Nucl. Phys. 4, 156].

  51. Hayashi, K. (1973) Phys. Lett. B44, 497.

    Google Scholar 

  52. Kalb, M., and Ramond, P. (1974) Phys. Rev. D9, 2273.

    Google Scholar 

  53. Clark, T.E., and Love, S.T. (1983) Nucl. Phys. B223, 135; (1988) T.E. Clark, C.H. Lee and S.T. Clark, ibid. 308, 379.

    Google Scholar 

  54. Chang, F., and Gürsey, F. (1969) Nuovo Cim. A63, 617.

    Google Scholar 

  55. Takahashi, Y., and Palmer, R. (1970) Phys. Rev. D1, 2974.

    Google Scholar 

  56. Boyarkin, O.M. (1981) Izvest. VUZ:fiz. 24,No. 11, 29 [English translation: (1981) Sov. Phys. J. 24, 1003].

    Google Scholar 

  57. Avdeev, L.V., and Chizhov, M.V. (1994) Phys. Lett. B321, 212.

    Google Scholar 

  58. Avdeev, L.V., and Chizhov, M.V. (1994) A queer reduction of degrees of freedom. Preprint JINR E2–94–263 (hep-th/9407067), Dubna: JINR.

    Google Scholar 

  59. Dvoeglazov V.V., (1993) Hadronic J. 16, 459; Dvoeglazov, V.V., Tyukhtyaev, Yu.N., and Khudyakov, S.V. (1994) Izvest. VUZ:fiz. 37, No.9, 110 [English translation: (1994) Russ. Phys. J. 37, 898]; Dvoeglazov, V.V. (1994) Rev. Mex. Fis. Suppl. 40, 352.

    Google Scholar 

  60. Dvoeglazov, V.V. (1997) Helv. Phys. Acta (70, 677, 686, 697).

    Google Scholar 

  61. Dvoeglazov, V.V. (1986) Questions in the theory of the (1, 0) ⊕ (0, 1) quantized fields. Preprint EFUAZ FT–96–31 (hep-th/9611068), Zacatecas.

  62. Dvoeglazov, V.V. (1994) Can the 2(2j + 1) component Weinberg-Tucker-Hammer equations describe the electromagnetic field? Preprint EFUAZ FT–94–09-REV (hep-th/9410174). Zacatecas.

  63. Barut, A., Muzinich I. and Williams D.N. (1963) Phys. Rev. 130, 442.

    Google Scholar 

  64. Joos, H., (1962) Fortshr. Phys. 10, 65.

    Google Scholar 

  65. Weaver, D.L., Hammer, C.L., and Good, R.H. jr. (1964) Phys. Rev. B135, 241.

    Google Scholar 

  66. Weinberg, S., (1964) Phys. Lett. 9, 357; (1964) Phys. Rev. B135, 1049; (1965) ibid. 138, 988.

    Google Scholar 

  67. Marinov, M.S., (1968) Ann. Physics 49, 357.

    Google Scholar 

  68. Tucker, R.H., and Hammer, C.L. (1971) Phys. Rev. D3, 2448.

    Google Scholar 

  69. Weinberg, S. (1996) Quantum Theory of Fields, Cambridge University Press, p. 252.

  70. Sankaranarayanan, A., and Good, R.H. jr. (1965) Nuovo Cim. 36, 1303; (1965) A. Sankaranarayanan, ibid. 38, 889.

    Google Scholar 

  71. Majorana, E. (1937) Nuovo Cim. 14, 171.

    Google Scholar 

  72. McLennan, J.A. (1957) Phys. Rev. 106, 821; K.M. Case (1957) Phys. Rev. 107, 307.

    Google Scholar 

  73. Nigam, B.P., and Foldy, L.L. (1956) Phys. Rev. 102, 568.

    Google Scholar 

  74. Dvoeglazov, V.V. (1996) Int. J. Theor. Phys. 35, 115.

    Google Scholar 

  75. Skachkov, N.B. (1975) Teor. Mat. Fiz. 22, 213 [English translation: (1975) Theor. Math. Phys. 22, 149].

    Google Scholar 

  76. Dvoeglazov, V.V. (1997) Nuovo Cim. B (B112, 847).

    Google Scholar 

  77. Bruce, S (1995) Nuovo Cim B110, 115.

    Google Scholar 

  78. Dvoeglazov, V.V. (1997) Found. Phys. Lett. 10, 383

    Google Scholar 

  79. Dvoeglazov, V.V. (1997) Int. J. Theor. Phys. 36, 635.

    Google Scholar 

  80. Dvoeglazov, V.V. (1997) Mod. Phys. Lett. A12, 2741

    Google Scholar 

  81. Dvoeglazov, V.V. (1996) Nuovo Cim. B111, 483.

    Google Scholar 

  82. Barut A.O., and Zino G. (1993) Mod. Phys. Lett. A8, 1011; G. Ziino (1996) Int. J. Mod. Phys. A11, 2081.

    Google Scholar 

  83. Múnera H. (1995) Rev. Colomb. Fis. 27, 215; Múnera, H. and O. Guzmán, Found. Phys. Lett, in press; (1997) Mod. Phys. Lett. A12, 2089

    Google Scholar 

  84. Dvoeglazov, V.V. (1997) On the importance of the normalization. Preprint EFUAZ FT–96–39-REV, hep-th/9712036, Zacatecas

  85. Dvoeglazov, V.V. (1998) Photon-notoph equations. Preprint EFUAZ FT–97–53-REV, physics/9804010, Zacatecas

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvoeglazov, V.V. Theoretical Ideas of the XX century for describing electromagnetism. Speculations in Science and Technology 21, 91–110 (1998). https://doi.org/10.1023/A:1005394928801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005394928801

Keywords

Navigation