Advertisement

Biotechnology Letters

, Volume 20, Issue 4, pp 411–415 | Cite as

Production of lovastatin by a wild strain of Aspergillus terreus

  • György Szakács
  • György Morovján
  • Robert P. Tengerdy
Article

Abstract

Of 68 Aspergillus terreus, three produced lovastatin with equivalent or better yield than strain ATCC 20542 originally described for lovastatin production. Medium optimization experiments with the best isolate (TUB F-514) indicated that lactose, rapeseed meal and KNO3 were the best carbon, organic nitrogen and inorganic nitrogen sources, respectively. In shake-flasks with optimized medium containing 4 % (w/v) lactose, 400 μg lovastatin/ml was produced, with a yield of 10 mg/g lactose. In solid substrate fermentation on extracted sweet sorghum pulp supplemented with cheese whey 1500 μg lovastatin/g dry weight was produced with a yield of 37.5 mg/g lactose. © Rapid Science Ltd. 1998

Keywords

Fermentation Lactose Sorghum Lovastatin KNO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, A.W., Chen, J., Kurov, G., Hunt, V, Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirschfield, J., Hoogsteen, KJ., Liesch, J. and Springer, J. (1980). Proc.Natl.Acad.Sci. USA 77, 3957–3961.Google Scholar
  2. Buckland, B., Gbewonyo, K., Hallada, T., Kaplan, L. and Masurekar, P. (1989). Production of lovastatin, an inhibitor of cholesterol accumulation in humans. In: Novel Microbial Products for Medicine and Agriculture, A.L. Demain, G.A. Somkuti, J.C. Hunter-Cevera and H.W. Rossmoore, eds., pp. 161–169, ElsevierGoogle Scholar
  3. Endo, A. (1979). J.Antibiot. 32, 852–854.Google Scholar
  4. Gomes, I., Gomes, J., Steiner, W. and Esterbauer, H. (1992). Appl.Microbiol.Biotechnol. 31, 601–608Google Scholar
  5. Haltrich, D., Laussamayer, B. and Steiner, W. (1994). Appl.Microbiol.Biotechnol. 42, 522–530.Google Scholar
  6. Miller, G.L. (1959). Anal.Chem. 31, 426–428.Google Scholar
  7. Monaghan, R.L. and Koupal, L.R. (1989). Use of the Plackett&Burman technique in a discovery program for new natural products. In: Novel Microbial Products for Medicine and Agriculture, A.L. Demain, G.A. Somkuti, J.C. Hunter-Cevera and H.W. Rossmoore, eds., pp. 25–32, ElsevierGoogle Scholar
  8. Morovján, G., Szakács, G. and Fekete, J. (1979). J.Chromatogr. A, 763, 165–172.Google Scholar
  9. Raper, K. B. and Fennell, D. (1965). The genus Aspergillus, Baltimore: Williams and WilkinsGoogle Scholar
  10. Royer, J.C. and Nakas, J.P. (1989). Enzyme Microb.Technol. 11, 405–410.Google Scholar
  11. Samson, R.A. and Pitt, J.I. (1986). Advances in Penicillium and Aspergillus Systematics, New York: Plenum PressGoogle Scholar
  12. Tengerdy, R.P., Szakács, G. and Sipõcz, J. (1996). Appl.Biochem.Biotechnol. 57/58, 563–569.Google Scholar
  13. Vinci, V.A., Hoerner, T.D., Coffman, A.D., Schimmel, T.G., Dabora, R.L., Kirpekar, A.C., Ruby, C.L. and Stieber, R.W. (1991). J.lnd.M.icrobiol. 8, 113–120.Google Scholar
  14. Zuzek, M., Friedrich, J., Cestnik, B., Karalic, A. and Cimerman, A. (1996). Biotechnol.Techn. 10, 991–996.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • György Szakács
    • 1
  • György Morovján
    • 2
  • Robert P. Tengerdy
    • 3
  1. 1.Department of Agricultural Chemical TechnologyTechnical University of BudapestBudapestHungary
  2. 2.Drugs and FeedsState Control Institute for Veterinary BiologicalsBudapestHungary
  3. 3.Department of MicrobiologyColorado State UniversityFort CollinsUSA

Personalised recommendations