Skip to main content
Log in

Disorders of homocysteine metabolism

  • Published:
Journal of Inherited Metabolic Disease

Abstract

This review of recent advances covers (1) the metabolism of methionine and its regulation, emphasizing interactions with the three important vitamins folate, cobalamin and pyridoxine; (2) present knowledge of enzymological and molecular-genetic aspects of homozygous deficiencies of the three enzymes which cause elevated homocyst(e)ine; (3) recent clinical findings, post-methionine loading results related to enzyme and mutation studies in obligate heterozygotes for cystathionine β-synthase deficiency; (4) important new evidence for disturbed homocysteine metabolism in neural tube defects, particularly based on studies of the thermolabile methylene-tetrahydrofolate reductase mutation which is also of importance in vascular disease; (5) the suitability and limitations of animal models that have so far been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams MJ, Khoury MJ, Scanlon K, et al (1995) Elevated midtrimester serum methylmalonic acid levels as a risk factor for neural tube defects. Teratology 51: 311–317.

    Google Scholar 

  • Adams M, Smith PD, Martin D, Thompson JR, Samani NJ (1996) Genetic analysis of thermolabile methylenetetrahydrofolate reductase as a risk factor for myocardial infarction. Q J Med 89: 437–444.

    Google Scholar 

  • Akerman K, Karkola K, Kajander O (1991) Methionine adenosyltransferase activity in cultured cells and in human tissues. Biochim Biophys Acta 1097: 140–144.

    Google Scholar 

  • Alvarez L, Corrales F, Martinduce A, Mato JM (1993) Characterization of a full-length cDNA encoding human liver S-adenosylmethionine synthetase — tissue-specific gene expression and messenger RNA levels in hepatopathies. Biochem J 293: 481–486.

    Google Scholar 

  • Aultriche DB, Yuan CS, Borchardt RT (1994) A single mutation at lysine 426 of human placental S-adenosylhomocysteine hydrolase inactivates the enzyme. J Biol Chem 269: 31472–31478.

    Google Scholar 

  • Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. FASEB J 4: 1450–1459.

    Google Scholar 

  • Blundell G, Jones BG, Rose FA, Tudball N (1996) Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 122: 163–172.

    Google Scholar 

  • Boers GHJ, Fowler B, Smals AGH, et al (1985a) Improved identification of heterozygotes for homocystinuria due to cystathionine β-synthase deficiency by the combination of methionine loading and enzyme determination in cultured fibroblasts. Hum Genet 69: 164–169.

    Google Scholar 

  • Boers GHJ, Smals AGH, Trijbels FJM, et al (1985b) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313: 709–715.

    Google Scholar 

  • Celermajer DS, Sorensen K, Ryalls M, et al (1993) Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 22: 854–858.

    Google Scholar 

  • Chadefaux-Vekemans B, Kara Mostefa A, Thuillier L, et al (1996) Does the prevalent mutation 677C → T in the methylene-tetrahydrofolate reductase gene account for hyperhomocysteinemia related to cardiovascular disease? J Inher Metab Dis 19(supplement 1): 25.

    Google Scholar 

  • Chen Z, Crippen K, Gulati S, Banerjee R (1994) Purification and kinetic mechanism of mammalian methionine synthase from pig liver. J Biol Chem 269: 27193–27197.

    Google Scholar 

  • Clarke R, Daly L, Robinson K, et al (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324: 1149–1155.

    Google Scholar 

  • Córdoba A, Circra S, Carrascosa R, et al (1996) Thermolabile genotype of methylenetetra-hydrofolate reductase (MTHFR) and hyperhomocysteinemia in patients with nonhemorrhagic cerebo-vascular disease. J Inher Metab Dis 19(supplement 1): 23.

    Google Scholar 

  • Daubner SC, Matthews RG (1982) Purification and properties of methylenetetrahydrofolate reductase from pig liver. J Biol Chem 257: 140–145.

    Google Scholar 

  • Dawson PA, Kraus JP, Cochran DAE, Dudman NPB, Emmerson BT, Gordon RB (1996) Variable hyperhomocysteinaemia phenotype in heterozygotes for the Gly307Ser mutation in cystathionine beta-synthase. Aust NZ J Med 26: 180–185.

    Google Scholar 

  • de Franchis R, Mandato C, Sebastio G, et al (1996) Moderate hyperhomocysteinemia (HHC) and C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene as a risk factor for atherosclerotic cardiovascular disease (CVD) and neural tube defects (NTD) in Italy. J Inher Metab Dis 19(supplement 1): 24.

    Google Scholar 

  • De Valk HW, Van Eeden MKG, Banga JD, et al (1996) Evaluation of the presence of premature atherosclerosis in adults with heterozygosity for cystathionine-β-synthase deficiency. Stroke 27: 1134–1136.

    Google Scholar 

  • Dudman NPB, Wilcken DEL, Wang J, Lynch JF, Macey D, Lundberg P (1993) Disordered methionine/homocysteine metabolism in premature vascular disease — its occurrence, cofactor therapy and enzymology. Arterioscler Thromb 13: 1253–1260.

    Google Scholar 

  • Ehlers K, Elmazar MMA, Nau H (1996) Methioinine reduces the valproic acid-induced spina bifida rate in mice without altering valproic acid kinetics. J Nutrition 126: 67–75.

    Google Scholar 

  • Fenton WA, Rosenberg LE (1995) Inherited disorders of cobalamin transport and metabolism. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease, 7th edn. New York: McGraw-Hill, 3129–3150.

    Google Scholar 

  • Finkelstein JD (1990) Methioinine metabolism in mammals. J Nutr Biochem 1: 228–237.

    Google Scholar 

  • Fowler B (1985) Recent advances in the mechanism of pyridoxine-responsive disorders. J Inher Metab Dis 8(supplement 1): 76–83.

    Google Scholar 

  • Garrow TA (1996) Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem 271: 22831–22838.

    Google Scholar 

  • Goyette P, Sumner JS, Milos R, et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nature Genet 7: 195–200.

    Google Scholar 

  • Gulati S, Baker P, Li YN, et al (1996) Defects in human methionine synthase in cblG patients. Hum Mol Genet 5: 1859–1865.

    Google Scholar 

  • Izumi M, Iwai N, Ohmichi N, Nakamura Y, Shimoike H, Kinoshita M (1996) Molecular variant of 5,10-methylenetetrahydrofolate reductase is a risk factor of ischemic heart disease in the Japanese population. Atherosclerosis 121: 293–294.

    Google Scholar 

  • Jencks DA, Matthews RG (1987) Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethioinine. J Biol Chem 262: 2485–2493.

    Google Scholar 

  • Johnson JL, Wadman SK (1995) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease, 7th edn. New York: McGraw-Hill, 2271–2283.

    Google Scholar 

  • Kang SS, Wong PWK, Bock HGO, Horwitz A, Grix A (1991) Intermediate hyperhomocysteinemia resulting from compound heterozygosity of methylenetetrahydrofolate reductase mutations. Am J Hum Genet 48: 546–551.

    Google Scholar 

  • Kery V, Bukovska G, Kraus JP (1994) Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate — cystathionine β-synthase is a heme protein. J Biol Chem 269: 25283–25288.

    Google Scholar 

  • Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM (1993) Maternal plasma folate and vitamin-B12 are independent risk factors for neural tube defects. Q Med 86: 703–708.

    Google Scholar 

  • Kluijtmans LAJ, Boers GHJ, Stevens EMB, et al (1996a) Defective cystathionine β-synthase regulation by S-adenosylmethionine in a partially pyridoxine responsive homocystinuria patient. J Clin Invest 98: 285–289.

    Google Scholar 

  • Kluijtmans LAJ, van den Heuvel LPWJ, Boers GHJ, et al (1996b) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 58: 35–41.

    Google Scholar 

  • Konishi K, Fujioka M (1988) Rat liver glycine methyltransferase. Cooperative binding of S-adenosylmethioinine and loss of cooperativity by removal of a short NH2-terminal segment. J Biol Chem 263: 13381–13385.

    Google Scholar 

  • Kozich V, Kraus E, de Franchis R, et al (1995) Hyperhomocysteinemia in premature arterial disease: examination of cystathionine β-synthase alleles at the molecular level. Hum Mol Genet 4: 623–629.

    Google Scholar 

  • Kraus JP (1994) Molecular basis of phenotype expression in homocystinuria. J Inher Metab Dis 17: 383–390.

    Google Scholar 

  • Lee KH, Cava M, Amiri P, Ottoboni T, Lindquist RN (1992) Betaine-homocysteine methyltransferase from rat liver — purification and inhibition by a boronic acid substrate analog. Arch Biochem Biophys 292: 77–86.

    Google Scholar 

  • Lentz SR, Sobey CG, Piegors DJ, et al (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98: 24–29.

    Google Scholar 

  • Löhrer FMT, Angst CP, Haefeli WE, Jordan PP, Ritz R, Fowler B (1996a) Low whole-blood S-adenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine in coronary artery disease. Arterioscler Thromb Vasc Biol 16: 727–733.

    Google Scholar 

  • Löhrer FMT, Haefeli WE, Angst CP, Browne G, Frick G, Fowler B (1996b) Effect of methionine loading on 5-methyltetrahydrofolate S-adenosylmethionine and S-adenosylhomocysteine in plasma of healthy subjects. Clin Sci 91: 79–86.

    Google Scholar 

  • Marchesini G, Bugianesi E, Bianchi G, et al (1992) Effect of S-adenosyl-L-methionine administration on plasma levels of sulphur-containing amino acids in patients with liver cirrhosis. Clin Nutr 11: 303–308.

    Google Scholar 

  • Miller JW, Nadeau MR, Smith J, Smith D, Selhub J (1994) Folate-deficiency-induced homocysteinaemia in rats — disruption of S-adenosylmethionine's co-ordinate regulation of homocysteine metabolism. Biochem J 298: 415–419.

    Google Scholar 

  • Mills JL, Mcpartlin JM, Kirke PN, et al (1995) Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345: 149–151.

    Google Scholar 

  • Nicolaou A, Kenyon SH, Gibbons JM, Ast T, Gibbons WA (1996) In vitro inactivation of mammalian methionine synthase by nitric oxide. Eur J Clin Invest 26: 167–170.

    Google Scholar 

  • Ou CY, Stevenson RE, Brown VK, et al (1996) 5,10-Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am J Med Genet 63: 610–614.

    Google Scholar 

  • Papapetrou C, Lynch SA, Burn J, Edwards YH (1996) Methylenetetrahydrofolate reductase and neural tube defects. Lancet 348: 58.

    Google Scholar 

  • Refsum H, Ueland PM, Kvinnsland S (1986) Acute and long-term effects of high-dose methotrexate treatment on homocysteine in plasma and urine. Cancer Res 46: 5385–5391.

    Google Scholar 

  • Rozen R (1996) Molecular genetic aspects of hyperhomocysteinemia and its relation to folic acid. Clin Invest Med 19: 171–178.

    Google Scholar 

  • Rubba P, Faccenda F, Pauciullo P, et al (1990) Early signs of vascular disease in homocystinuria — a noninvasive study by ultrasound methods in eight families with cystathionine-β-synthase deficiency. Metabolism 39: 1191–1195.

    Google Scholar 

  • Scott JM, Molloy AM, Kennedy DG, Kennedy S, Weir DG (1994) Effects of the disruption of transmethylation in the central nervous system: an animal model. Acta Neurol Scand 89(supplement 154): 27–31.

    Google Scholar 

  • Sillaots SL, Hall CA, Hurteloup V, Rosenblatt DS (1992) Heterogeneity in cblG — differential retention of cobalamin on methionine synthase. Biochem Med Metab Biol 47: 242–249.

    Google Scholar 

  • Sperandeo MP, Candito M, Sebastio G, et al (1996) Homocysteine response to methionine challenge in four obligate heterozygotes for homocystinuria and relationship with cystathionine β-synthase mutations. J Inher Metab Dis 19: 351–356.

    Google Scholar 

  • Steegers-Theunissen RPM, Boers GHJ, Trijbels FJM, et al (1994) Maternal hyperhomocysteinemia: a risk factor for neural-tube defects? Metabolism 43: 1475–1480.

    Google Scholar 

  • Steegers-Theunissen RP, Boers GH, Blom HJ, et al (1995) Neural tube defects and elevated homocysteine levels in amniotic fluid. Am J Obstet Gynecol 172: 1436–1441.

    Google Scholar 

  • Tsai MY, Hanson NQ, Schwichtenberg K, Garg U (1995) Amplification refractory mutation systems to identify mutations in cystathionine beta-synthase deficiency. Clin Chem 41: 1775–1777.

    Google Scholar 

  • Tsai MY, Garg U, Key NS, Hanson NQ, Suh A, Schwichtenberg K (1996) Molecular and biochemical approaches in the identification of heterozygotes for homocystinuria. Atherosclerosis 122; 69–77.

    Google Scholar 

  • Utley CS, Marcel PD, Allen RH, Antony AC, Kolhouse JF (1985) Isolation and characterization of methionine synthetase from human placenta. J Biol Chem 25: 13656–13665.

    Google Scholar 

  • Van der Put NMJ, Steegers-Theunissen RPM, Frosst P, et al (1995) Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346: 1070–1071.

    Google Scholar 

  • Watanabe M, Osada J, Aratani Y, et al (1995) Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci 92: 1585–1589.

    Google Scholar 

  • Whitehead AS, Gallagher P, Mills JL, et al (1995) A genetic defect in 5,10-methylenetetrahydrofolate reductase in neural tube defects. Q J Med 88: 763–766.

    Google Scholar 

  • Wilcken DEL, Wang XL, Sim AS, McCredie RM (1996a) Distribution in healthy and coronary populations of methylenetetrahydrofolate reductase (MTHFR) C677T mutation. Arterioscler Thromb Vasc Biol 16: 878–882.

    Google Scholar 

  • Wilcken DEL, Wang XL (1996b) Relevance to spina bifida of mutated methylenetetrahydrofolate reductase. Lancet 347: 340.

    Google Scholar 

  • Yeo E, Wagner C (1994) Tissue binding of glycine N-methyltransferase, a major folate-binding protein of liver. Proc Natl Acad Sci 91: 210–214.

    Google Scholar 

  • Zhou J, Kang S, Wong PWK, Fournier B, Rozen R (1990) Purification and characterisation of methylenetetrahydrofolate reductase from human cadaver liver. Biochem Med Metab Biol 43: 234–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, B. Disorders of homocysteine metabolism. J Inherit Metab Dis 20, 270–285 (1997). https://doi.org/10.1023/A:1005369109055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005369109055

Keywords

Navigation