Climatic Change

, Volume 39, Issue 1, pp 111–133 | Cite as

Evaluating GCM Output with Impact Models

  • Larry J. Williams
  • Daigee Shaw
  • Robert Mendelsohn


This study uses empirical agricultural impact models to compare the U.S. climate change predictions of 16 General Circulation Models (GCMs). The impact analysis provides a policy-relevant index by which to judge complex climate predictions. National aggregate impacts vary widely across the 16 GCMs because of varying regional and seasonal patterns of predicted climate change. Examining the predicted impacts from the full set of GCMs reveals that the seasonal detail in the GCM predictions is so noisy that it is not significantly different from a constant annual change. However, a consistent regional pattern does emerge across the set of models. Nonetheless, aggregating climate change across seasons and regions within the United States, using a national-annual climate change provides a reasonable and efficient approximation to the expected impact predicted by the 16 GCM models.


Climate Change Circulation Model Seasonal Pattern General Circulation Model Regional Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boer, G. J., McFarlane, N. A., and Lazare, M.: 1992, ‘Greenhouse Gas Induced Climate Change Simulated with the Canadian Climate Centre Second Generation General Circulation Model’, J. Clim. 5, 1045–1077.Google Scholar
  2. Carter, T. R., Parry, M. L., Harasawa, H., and Nishioka, S.: 1994, IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations, University College London and Center for Global Environmental Research, London, United Kingdom and Tsukuba, Japan. pp. 52–53.Google Scholar
  3. Cohen, S. J., Boer, G. J., McFarlane, N., Blanchet, J. P., Lazare, M., Sargent, N. E., Majaess, F. G., Phillips, D. P., Webb, M., and Cutler, T.: 1990, Application of the Canadian Climate Centre General Circulation Model Output for Regional Climate Impact Studies, Canadian Climate Centre, Downsview, Ontario, Canada, pp. 1–18.Google Scholar
  4. Cubasch, U., Meehl, G., and Zhao, Z. C.: 1994, IPCC WGI Initiative: Evaluation of Regional Climate Simulations, reprinted by EPRI, Palo Alto, pp. 1–17.Google Scholar
  5. Efron, B.: 1987, ‘Better Bootstrap Confidence Intervals’, J. Amer. Stat. Assoc. 82, 171–200.Google Scholar
  6. Efron, B. and Tibshirani, R.: 1986, ‘Bootstrap Measures for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy’, Stat. Sci. 1, 54–77.Google Scholar
  7. Grotch, S. L. and MacCracken, M. C.: 1991, ‘The Use of General Circulation Models to Predict Regional Climate Change’, J. Clim. 4, 286–303.Google Scholar
  8. Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Reudy, R., and Travis, L.: 1983, ‘Efficient Three-Dimensional Models for Climate Studies: Models I and II’, Mon. Wea. Rev. 111, 609–662.Google Scholar
  9. Hansen, J., Lacis, A. Rind, D., Russell, L., Stone, P., Fung, I., Ruedy, R., and Lerner, J.: 1984, ‘Climate Sensitivity Analysis of Feedback Mechanisms’, in Hansen, J. and Takahashi, T. (eds.), Climate Processes and Climate Sensitivity, AGU, Washington, Geophys. Monogr. Ser. 29, 130–163.Google Scholar
  10. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russel, G., and Stone, P.: 1988, ‘Global Climate Changes as Forecast by Goddard Institute for Space Studies Three-Dimensional Model’, J. Geophys. Res. 93, 9341–9364.Google Scholar
  11. Hart, T. L., Bourke, W. McAvaney, B. J., Forgan, B. W., and McGregor, J. L.: 1990, ‘Atmospheric General Circulation Simulations with the BMRC Global Spectral Model: The Impact of Revised Physical Parameterizations’, J. Clim. 3, 436–459.Google Scholar
  12. Henderson-Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J., McGuffie, K., and Pitman, A. J.: 1993, ‘Tropical Deforestation: Modelling Local to Regional-Scale Climate Change’, J. Geophys. Res. 98(D4), 7289–7315.Google Scholar
  13. Ibbotson, R. and Brinson, G.: 1987, Investment Markets, McGraw-Hill, New York, pp. 57–62.Google Scholar
  14. Intergovernmental Panel on Climate Change: 1990, Climate Change: The IPCC Scientific Assessment, Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Cambridge University Press, New York, pp. xi–xxxiii.Google Scholar
  15. Intergovernmental Panel on Climate Change: 1992, Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Cambridge University Press, New York, pp. 5–20.Google Scholar
  16. Intergovernmental Panel on Climate Change: 1994, Climate Change 1994: Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios, Houghton, J. T., Meira Filho, L. G., Bruce, J., Lee, Hoesung, Callander, B. A., Haites, E., Harris, N., and Maskell, K. (eds.), Cambridge University Press, New York, pp. 11–34.Google Scholar
  17. Leemans, R. and Cramer, W. P.: 1991, The IIASA Database for Mean Monthly Values of Temperature, Precipitation, and Cloudiness on a Global Terrestrial Grid, Raster Data on a 30 minute Geographic (lat/long) 360 × 720 grid, IIASA, Laxenburg, Austria, pp. A03–A09.Google Scholar
  18. Legates, D. R. and Willmott, C. J.: 1989, Monthly Average Surface Air Temperature and Precipitation, Digital Raster Data on a 30 minute Geographic (lat/long) 360× 721 grid (centroid-registered on.5 degree meridians), National Center for Atmospheric Research, Boulder, CO, pp. A04–A12.Google Scholar
  19. Legates, D. R. and Willmott, C. J.: 1990, ‘Mean Seasonal and Spatial Variability in Global Surface Air Temperature’, Theor. Appl. Climatol. 41, 11–21.Google Scholar
  20. Legates, D. R. and Willmott, C. J.: 1990, ‘Mean Seasonal and Spatial Variability in Gauge-Corrected Global Precipitation’, Int. J. Clim. 10, 111–127.Google Scholar
  21. McFarlane, N. A., Boer, N. A., Blanchet, J. P., and Lazare, M.: 1992, ‘The Canadian Climate Centre Second Generation General Circulation Model and its Equilibrium Climate’, J. Clim. 5, 1013–1044.Google Scholar
  22. McGregor, J. L., Gordon, I. G., Watterson, I. G., Dix, M. R., and Rotstayn, L. D.: 1993, The CSIRO 9-level Atmospheric General Circulation Model, CSIRO Division of Atmospheric Research Tech. Paper No. 26, Mordialloc, Australia, p. 89.Google Scholar
  23. Mendelsohn, R., Nordhaus, W., and Shaw, D.: 1994, ‘The Impact of Global Warming on Agriculture: A Ricardian Analysis’, American Economic Review, 753–771.Google Scholar
  24. Mendelsohn, R., Nordhaus, W., and Shaw, D.: 1996, The Impact of Climate Variation on Agriculture, manuscript, Yale School of Forestry and Environmental Studies, New Haven, CT, pp. 1–36.Google Scholar
  25. Morgan, M. G. and Henrion, M.: 1990, Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, New York, pp. 47–71.Google Scholar
  26. Oerlemans, J.: 1989, ‘A Projection of Future Sea Level’, Climatic Change 15, 151–174.Google Scholar
  27. Oglesby, R. and Saltzman, B.: 1992, ‘Equilibrium Climate Statistics of a GCM as a Function of Atmospheric CO2’, J. Clim. 5(1), 66–92.Google Scholar
  28. Phillips, T. J.: 1994, A Summary Documentation of the AMIP Models, Program for Climate Model Diagnosis and Intercomparison, UCRL-ID-116384, University of California, Lawrence Livermore National Laboratory, pp. 1–22.Google Scholar
  29. Schlesinger, M. E. and Verbitsky, M. Ya.: 1996, ‘Simulation of Glacial Onset with a Coupled Atmospheric General Circulation/Mixed-Layer Ocean-Ice-Sheet/Asthenosphere Model’, Paleaoclimates-Data and Modelling, 2, 179–201.Google Scholar
  30. Schlesinger, M. E. and Zhao, Z.-C.: 1989, ‘Seasonal Climate Changes Induced by Doubled CO2 as Simulated by the OSU Atmospheric GCM/Mixed-Layer Ocean Model’, J. Clim. 2, 459–495.Google Scholar
  31. Shlyakhter, A. I. and Kammen, D. M.: 1992, ‘Sea Level Rise or Fall?’, Nature 357, 25.Google Scholar
  32. Stone, P. H.: 1992, ‘Forecast Cloudy: The Limits of Global Warming Models’, Technology Review 95, 32–40.Google Scholar
  33. Thompson, S. L. and Pollard, D.: 1995, ‘A Global Climate Model (GENESIS) with a Land Surface Transfer Scheme (LSX) Part 1: Present Climate Simulation’, J. Clim. 8, 732–761.Google Scholar
  34. Viner, D. and Hulme, M.: 1994, The Climate Impacts LINK Project, CRU of University of East Anglia, Norwich, U. K., pp. 10–17.Google Scholar
  35. Wang, W-C., Dudek, M. P., and Liang, X.: 1992, ‘Inadequacy of Effective CO2 as a Proxy to Assess the Greenhouse Effect of Other Radiative Gases’, Geophys. Res. Lett. 19, 1375–1378.Google Scholar
  36. Washington, W. and Meehl, G.: 1992, ‘Greenhouse Sensitivity Experiments with Penetrative Cumulus Convection and Tropical Cirrus Albedo Effects’, Clim. Dyn. 8, 211–233.Google Scholar
  37. Watterson, I. G., Dix, M. R., Gordon, H. B., and McGregor, J. L.: 1995, ‘The CSIRO Nine-Level Atmospheric General Circulation Model and its Equilibrium Present and Doubled CO2 Climates’, Australian Meteorological Magazine 44(2), 111–125.Google Scholar
  38. Wetherald, R. T. and Jenne, R.: 1989, mimeo, NCAR, Boulder, CO, pp. 1–4.Google Scholar
  39. Wetherald, R. T. and Manabe, S.: 1986, ‘An Investigation of Cloud Cover Change in Response to Thermal Forcing’, Climatic Change 8, 5–23.Google Scholar
  40. Wetherald, R. T. and Manabe, S.: 1988, ‘Cloud Feedback Processes in a General Circulation Model’, J. Atmos. Sci. 45, 1397–1415.Google Scholar
  41. Willmott, C. J. and Legates, D. R.: 1993, ‘A Comparison of GCM-Simulated and Observed Mean January and July Surface Air Temperature’, J. Clim. 6, 274–291.Google Scholar
  42. Wilson, C. A. and Mitchel, J. F. B.: 1987, ‘A Doubled CO2 Climate Sensitivity Experiment With a Global Climate Model Including a Simple Ocean’, J. Geophys. Res., 92, 13315–13343.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Larry J. Williams
    • 1
  • Daigee Shaw
    • 2
  • Robert Mendelsohn
    • 3
  1. 1.Electric Power Research InstitutePalo AltoU.S.A
  2. 2.Academia SinicaTaipeiTaiwan ROC
  3. 3.Yale UniversityNew HavenU.S.A

Personalised recommendations