Climatic Change

, Volume 35, Issue 4, pp 449–461 | Cite as




We use a frame-based simulation model to estimate future rate of advance of the arctic treeline in response to scenarios of transient changes in temperature, precipitation, and fire regime. The model is simple enough to capture both the short-term direct response of vegetation to climate and the longer-term interactions among vegetation, fire, and insects that are important features of dynamic vegetation models. We estimate a 150–250 yr time lag in forestation of Alaskan tundra following climatic warming and suggest that, with rapid warming under dry conditions, there would be significant development of boreal grassland-steppe, a novel ecosystem type that was common during the late Pleistocene and today occurs south of the boreal forest in continental regions. Together, the time lag and grassland development would delay the positive feedback of vegetation change to climatic warming, providing a window of opportunity to control fossil fuel emissions, the primary cause of this warming.


Pleistocene Boreal Forest Climatic Warming Late Pleistocene Vegetation Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous: 1994, Alaska Land Characteristics Data Set — Interim Land Cover Classification, Eros Data Center and Eros Alaska Field Office, National Mapping Division, U.S. Geological Survey, Anchorage.Google Scholar
  2. Bonan, G. B.: 1990, 'Carbon and Nitrogen Cycling in North American Boreal Forests. II. Biogeographic Patterns’, Can. J. For. Res. 20, 1077–1088.Google Scholar
  3. Bonan, G. B., Chapin, F. S., III and Thompson, S. L.: 1995, 'Boreal Forest and Tundra Ecosystems as Components of the Climate System’, Clim. Change 29, 145–167.Google Scholar
  4. Bonan, G. B., Pollard, D., and Thompson, S. L.: 1992, 'Effects of Boreal Forest Vegetation on Global Climate’, Nature 359, 716–718.Google Scholar
  5. Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, G.: 1993, 'Correlations between Climate Records from North Atlantic Sediments and Greenland Ice’, Nature 365, 143–147.Google Scholar
  6. Campbell, I. D. and McAndrews, J. H.: 1993, 'Forest Disequilibrium Caused by Rapid Little Ice Age Cooling’, Nature 366, 336–338.Google Scholar
  7. Chalita, S. and Le Treut, H.: 1994, 'The Albedo of Temperate and Boreal Forest and the Northern Hemisphere Climate: A Sensitivity Experiment Using the LMD GCM’, Clim. Dyn. 10, 231–240.Google Scholar
  8. Charney, J. G., Quirk, W. J., Chow, S.-H. and Kornfield, J.: 1977, 'A Comparative Study of Effects of Albedo Change on Drought in Semiarid Regions’, J. Atmos. Sci. 34, 1366–1385.Google Scholar
  9. Clark, J. S.: 1988, 'Effect of Climate Change on Fire Regimes in Northwestern Minnesota’, Nature 334, 233–235.Google Scholar
  10. Davis, M. B.: 1981, 'Quaternary History and the Stability of Forest Communities’, in West, D. C., Shugart, H. H., and Botkin, D. B. (eds.), Forest Succession: Concepts and Application, Springer-Verlag, New York, pp. 132–153.Google Scholar
  11. Davis, M. B. and Botkin, D. B.: 1985, 'Sensitivity of Cool-Temperate Forests and Their Fossil Pollen Record to Rapid Temperature Change’, Quater. Res. 23, 327–340.Google Scholar
  12. Foley, J. A., Kutzbach, J. E., Coe, M. T. and Levis, S.: 1994, 'Feedbacks between Climate and Boreal Forests during the Holocene Epoch’, Nature 371, 52–54.Google Scholar
  13. Graumlich, L. J.: 1991, 'Subalpine Tree Growth, Climate, and Increasing CO2: An Assessment of Recent Growth Trends’, Ecology 72, 1–11.Google Scholar
  14. GRIP Members: 1993, 'Climatic Instability during the Last Interglacial Period Recorded in the GRIP Ice Core’, Nature 364, 203–207.Google Scholar
  15. Hogg, E. H. and Hurdle, P. A.: 1995, 'The Aspen Parkland in Western Canada: A Dry-Climate Analogue for the Future Boreal Forest?’, in Apps, M. J. and Price, D. T. (eds.), Boreal Forests and Global Change, Kluwer, Dordrecht, pp. 391–400.Google Scholar
  16. Hopkins, D. M., Matthews, J. V., Schweger, C. E., and Young, S. B. (eds.): 1982, Paleoecology of Beringia, Academic Press, New York, p. 489.Google Scholar
  17. Innes, J. L.: 1991, 'High-Altitude and High-Latitude Tree Growth in Relation to Past, Present and Future Global Climate Change’, Holocene 1, 168–173.Google Scholar
  18. Kauppi, P. E., Mielikäinen, K., and Kuusela, K.: 1992, 'Biomass and Carbon Budget of European Forests, 1971 to 1990’, Science 256, 70–74.Google Scholar
  19. King, G. A. and Neilson, R. P.: 1992, 'The Transient Response of Vegetation to Climate Change: A Potential Source of CO2 to the Atmosphere’, Water Air Soil Pollut. 64, 365–383.Google Scholar
  20. Kirschbaum, M. U. F. and Fischlin, A.: 1996, 'Climate Change Impacts on Forests’, in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge University Press, Cambridge, pp. 95–129.Google Scholar
  21. Lawrence, W. T. and Oechel, W. C.: 1983, 'Effects of Soil Temperature on the Carbon Exchange of Taiga Seedlings. II. Photosynthesis, Respiration, and Conductance’, Can. J. For. Res. 13, 850–859.Google Scholar
  22. Lloyd, A. H., Armbruster, W. S., and Edwards, M. E.: 1994, 'Ecology of a Steppe-Tundra Gradient in Interior Alaska’, J. Veg. Sci. 5, 897–912.Google Scholar
  23. MacDonald, G. M., Edwards, T. W. D., Moser, K. A., Pienitz, R., and Smol, J. P.: 1993, 'Rapid Response of Treeline Vegetation and Lakes to Past Climate Warming’, Nature 361, 243–246.Google Scholar
  24. Maxwell, B.: 1992, 'Arctic Climate: Potential for Change under Global Warming’, in Chapin, F. S., III, Jefferies, R. L., Reynolds, J. F., Shaver, G. R., and Svoboda, J. (eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, Academic Press, San Diego, California, U.S.A., pp. 11–34.Google Scholar
  25. Neilson, R. P.: 1993, 'Transient Ecotone Response to Climatic Change: Some Conceptual and Modelling Approaches’, Ecol. Appl. 3, 385–395.Google Scholar
  26. Neilson, R. P., King, G. A., and Koerper, G.: 1992, 'Toward a Rule-Based Biome Model’, Landsc. Ecol. 7, 27–43.Google Scholar
  27. Nicholls, N., Gruza, G. V., Jouzel, J., Karl, T. R., Ogallo, L. A., and Parker, D. E.: 1996, 'Observed Climate Variability and Change’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge, pp. 133–192.Google Scholar
  28. NOAA: 1993, 'Climatological Data Alaska’, Climatological Data Alaska 79(13), 6–22.Google Scholar
  29. Noble, I. R.: 1993, 'A Model of the Responses of Ecotones to Climate Change’, Ecol. Appl. 3, 396–403.Google Scholar
  30. Noble, I. R. and Slatyer, R. O.: 1980, 'The Use of Vital Attributes to Predict Successional Changes in Plant Communities Subject to Recurrent Disturbances’, Vegetatio 43, 5–21.Google Scholar
  31. Oechel, W. C., Hastings, S. J., Vourlitis, G., Jenkins, M., Riechers, G., and Grulke, N.: 1993, 'Recent Change of Arctic Tundra Ecosystems from a Net Carbon Dioxide Sink to a Source’, Nature 361, 520–523.Google Scholar
  32. Pastor, J. and Post, W. M.: 1988, 'Responses of Northern Forests to CO2-Induced Climate Change’, Nature 334, 55–58.Google Scholar
  33. Payette, S. and Gagnon, R.: 1985, 'Late Holocene Deforestation and Tree Regeneration in the Forest-Tundra of Quebec’, Nature 313, 570–572.Google Scholar
  34. Pielke, R. A. and Vidale, P. L.: 1996, 'The Boreal Forest and the Polar Front’, J. Geophys. Res. Atmos. 100D, 25755–25758.Google Scholar
  35. Prentice, K. C. and Fung, I. Y.: 1990, 'The Sensitivity of Terrestrial Carbon Storage to Climate Change’, Nature 346, 48–51.Google Scholar
  36. Rastetter, E.B.: 1996, 'Validating Models of Ecosystem Response to Global Change’, BioScience 46, 190–198.Google Scholar
  37. Schulze, E.-D.: 1989, 'Air Pollution and Forest Decline in a Spruce (Picea Abies) Forest’, Science 244, 776–783.Google Scholar
  38. Selkregg, L. L.: 1974a, Alaska Regional Profiles. Volume 5 Northwest Region, University of Alaska Arctic Information and Data Center, Anchorage, p. 265.Google Scholar
  39. Selkregg, L. L.: 1974b, Alaska Regional Profiles. Volume 6. Yukon Region, University of Alaska Arctic Information and Data Center, Anchorage, p. 346.Google Scholar
  40. Shugart, H. H., Smith, T. M., and Post, W. M.: 1992, 'The Potential for Application of Individual-Based Simulation Models for Assessing the Effects of Global Change’, Annu. Rev. Ecol. Syst. 23, 15–38.Google Scholar
  41. Shugart, H. H. and West, D. C.: 1980, 'Forest Succession Models’, BioScience 30, 308–313.Google Scholar
  42. Shukla, J., Nobre, C., and Sellers, P.: 1990, 'Amazon Deforestation and Climate Change’, Science 247, 1322–1325.Google Scholar
  43. Sirois, L., Bonan, G. B., and Shugart, H. H.: 1994, 'Development of a Simulation Model of the Forest-Tundra Transition Zone of Northeastern Canada’, Can. J. For. Res. 24, 697–706.Google Scholar
  44. Smith, T. M. and Shugart, H. H.: 1993, 'The Transient Response of Terrestrial Carbon Storage to a Perturbed Climate’, Nature 361, 523–526.Google Scholar
  45. Solomon, A. M.: 1986, 'Transient Response of Forest to CO2-Induced Climate Change: Simulation Modeling Experiments in Eastern North America’, Oecologia 68, 567–579.Google Scholar
  46. Starfield, A. M. and Chapin, F. S., III: 1996, 'Model of Transient Changes in Arctic and Boreal Vegetation in Response to Climate and Land Use Change’, Ecol. Appl. 6, 842–864.Google Scholar
  47. Starfield, A. M., Cummings, D. H. M., Taylor, R. D., and Quadling, M. S.: 1993, 'A Frame-Based Paradigm for Dynamic Ecosystem Models’, A I Applica. 7, 1–13.Google Scholar
  48. Steffen, W. L., Cramer, W., Plöchl, M., and Bugmann, H.: 1996, 'Global Vegetation Models: Incorporating Transient Changes to Structure and Composition’, J. Veg. Sci. 7, 321–328.Google Scholar
  49. Sykes, M. and Prentice, I. C.: 1995, 'Boreal Forest Futures: Modelling the Controls on Tree Species Range Limits and Transient Responses to Climate Change’, Water, Air Soil Pollut. 82, 415–428.Google Scholar
  50. Thomas, G. and Rowntree, P. R.: 1992, 'The Boreal Forests and Climate’, Quart. J. Roy. Meteor. Soc. 118, 469–497.Google Scholar
  51. Yurtsev, B. A.: 1982, 'Relics of the Xerophyte Vegetation of Beringia in Northeastern Asia’, in Hopkins, D. M., Matthews, J. V., Jr., Schweger, C. E., and Young, S. B. (eds.), Paleoecology of Beringia, Academic Press, New York, pp. 157–177.Google Scholar
  52. Zasada, J. C., Sharik, T. L., and Nygren, M.: 1992, 'The Reproductive Process in Boreal Forest Trees’, in Shugart, H. H., Leemans, R., and Bonan, G. B. (eds.), A Systems Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge, pp. 85–125.Google Scholar
  53. Zimov, S. A., Chuprynin, V. I., Oreshko, A. P., Chapin, F. S., III, Reynolds, J. F., and Chapin, M. C.: 1995, 'Steppe-Tundra Transition: An Herbivore-Driven Biome Shift at the End of the Pleistocene’, Am. Nat. 146, 765–794.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 2
  1. 1.Department of Integrative BiologyUniversity of CaliforniaBerkeleyU.S.A
  2. 2.Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulU.S.A

Personalised recommendations