Ukrainian Mathematical Journal

, Volume 52, Issue 7, pp 1113–1117 | Cite as

On the Approximation of Functions of the Hölder Class by Biharmonic Poisson Integrals

  • K. M. Zhigallo
  • Yu. I. Kharkevych


We determine the exact value of the upper bound of the deviation of biharmonic Poisson integrals from functions of the Hölder class.


Poisson Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Timan, “On quasismooth functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 15, No.3, 243–254 (1951).Google Scholar
  2. 2.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    V. A. Petrov, “Biharmonic Poisson integral,” Lit. Mat. Sb., 7, No.1, 137–142 (1967).Google Scholar
  4. 4.
    A. I. Stepanets, Classification and Approximation of Periodic Functions [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  5. 5.
    S. Kaniev, “On the deviation of functions biharmonic in a disk from their boundary values,” Dokl. Akad. Nauk SSSR, 153, No.5, 995–998 (1963).Google Scholar
  6. 6.
    P. Pych, “On a biharmonic function in unit disk,” Ann. Pol. Math., 20, No.3, 203–213 (1968).Google Scholar
  7. 7.
    A. Erdélyi, Asymptotic Expansions, Dover (1956).Google Scholar
  8. 8.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  9. 9.
    É. L. Shtark, “Complete asymptotic expansion for the upper bounds of deviations of functions from Lip 1 from their singular Abel - Poisson integrals,” Mat. Zametki, 13, No.1, 21–28 (1973).Google Scholar
  10. 10.
    V. P. Motornyi, “Approximation of periodic functions by trigonometric polynomials in the mean,” Mat. Zametki, 16, No.1, 15–26 (1974).Google Scholar
  11. 11.
    P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. 1. One-Dimensional Theory, Birkhäuser, Basel-New York (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • K. M. Zhigallo
    • 1
  • Yu. I. Kharkevych
    • 1
  1. 1.Volyn UniversityLutsk

Personalised recommendations