Skip to main content
Log in

HF-W Chronometry and Inner Solar System Accretion Rates

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Models for the mechanisms of accretion of the terrestrial planets are re-examined using the experimental technique of high-precision isotope ratio mass spectrometry of tungsten (W). The decay of 182Hf to 182W (via 182Ta) provides a new kind of radiometric chronometer of planet formation processes. Hafnium and W, the parent and daughter trace elements, are highly refractory; however, Hf is lithophile and strongly partitioned into the silicate portion of a planet, whereas W is moderately siderophile and preferentially partitioned into a coexisting metallic phase. More than 90% of terrestrial W has gone into the Earth's core during its formation. The residual silicate portion, the Earth's primitive mantle, has a Hf/W ratio in the range 10−40, an order of magnitude higher than chondritic (∼1.3). Tungsten isotopic data for the Earth and the Moon suggest that we can date a major event of planet formation: The Moon formed about 50 Myrs after the start of the solar system, providing strong support for the Giant Impact Theory of lunar origin. Recent simulations of this event imply that the Earth was probably only half formed at the time. From this we can deduce the planetary accretion rate. Tungsten isotope data for Mars provide evidence of a much shorter accretion interval, perhaps as little as 10 Myrs, but the rates for the Earth over the same time interval could have been comparable. The large W isotopic heterogeneities on Mars could only have been produced within the first 30 Myrs of the solar system. Large-scale mixing, e.g. from convective overturn, as is thought to drive the Earth's plates, must be absent from Mars.

Limitations of the method such as 1) cosmogenic 182Ta effects on lunar samples, 2) incomplete mixing of debris to cause W isotope heterogeneity on the Moon, and 3) initial 182Hf/180Hf heterogeneities of the early solar system are critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz, W., and Cameron, A.G.W.: 1990, 'Terrestrial Effects of the Giant Impact', in H. E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, Oxford, pp. 61–67.

    Google Scholar 

  • Boss, A. P.: 1990, '3D Solar Nebula Models: Implications for Earth Origin', in H. E. Newsom and J.H. Jones (eds.), Oxford Univ. Press, Oxford, pp. 3–15.

    Google Scholar 

  • Cameron, A.G.W.: 1978, 'Physics of the Primitive Solar Accretion Disk', The Moon and the Planets 18, 5–40.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., and Benz, W.: 1991, 'Origin of the Moon and the Single Impact Hypothesis IV', Icarus 92, 204–216.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., and Canup, R. M.: 1998, 'The Giant Impact Occurred During Earth Accretion', Lunar Planet. Sci. XXIX, 1062–1063.

    Google Scholar 

  • Chen, J.H., and Wasserburg, G. J.: 1986, 'Formation Ages and Evolution of Shergotty and its Parent Planet From U-Th-Pb Systematics', Geochim. Cosmochim. Acta 50, 955–968.

    Article  ADS  Google Scholar 

  • Eucken, A.: 1944, 'Physikalisch-Chemische Betrachtungen über die früheste Entwicklungsgeschichte der Erde', Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl., Heft 1, 1–25.

    Google Scholar 

  • Halliday, A.N.: 2000, 'Terrestrial Accretion Rates and the Origin of the Moon', Earth Planet. Sci. Lett 176, 17–30.

    Article  ADS  Google Scholar 

  • Halliday, A.N., and Lee, D-C.: 1999, 'Tungsten Isotopes and the Early Development of the Earth and Moon', Geochim. Cosmochim. Acta, (C. J. Allègre 60th Birthday Volume) 63, 4157–4179.

    Article  ADS  Google Scholar 

  • Halliday, A.N., Lee, D.-C., Christensen, J. N., Walder, A. J., Freedman, P. A., Jones, C. E., Hall, C. M., Yi, W., and Teagle, D.: 1995, 'Recent Developments in Inductively Coupled Plasma Magnetic Sector Multiple Collector Mass Spectrometry', Int. J. Mass Spec. Ion Process 146/147, 21–33.

    Article  Google Scholar 

  • Halliday, A.N., Rehkämper, M., Lee, D.-C., and Yi, W.: 1996, 'Early Evolution of the Earth and Moon: new Constraints From Hf-W Isotope Geochemistry', Earth Planet. Sci. Lett. 142, 75–89.

    Article  ADS  Google Scholar 

  • Halliday, A.N., Lee, D.-C., Christensen, J. N., Rehkämper, M., Yi, W., Luo, X., Hall, C. M., Ballentine, C. J., Pettke, T., and Stirling, C.: 1998, 'Applications of Multiple Collector ICPMS to Cosmochemistry, Geochemistry and Paleoceanography' (The 1997 Geochem. Soc. Presidential address.) Geochim. Cosmochim. Acta 62, 919–940.

    Article  ADS  Google Scholar 

  • Halliday, A.N., Lee, D.-C., and Jacobsen, S.B: 2000, 'Tungsten Isotopes, the Timing of Metalsilicate Fractionation and the Origin of the Earth and Moon', Origin of the Earth and Moon, Univ. Arizona Press, in submission.

  • Hanks, T.C., and Anderson, D. L.: 1969, 'The Early Thermal History of the Earth', Phys. Earth Plan. Inter. 2, 19–29.

    Article  ADS  Google Scholar 

  • Harper, C. L., and Jacobsen, S.B.: 1996, 'Evidence for 182Hf in the Early Solar System and Constraints on the Timescale of Terrestrial Core Formation', Geochim. Cosmochim. Acta 60, 1131–1153.

    Article  ADS  Google Scholar 

  • Harper, C. L., Volkening, J., Heumann, K.G., Shih, C.-Y., and Weismann, H.: 1991, '182Hf-182W: New Cosmochronometric Constraints on Terrestrial Accretion, Core Formation, the Astrophysical Site of the r-Process, and the Origin of the Solar System', Lunar Planet. Sci. XXII, p. 515.

    ADS  Google Scholar 

  • Horan, M. F., Smoliar, M. I., and Walker, R. J.: 1998, '182W and 187Re-187Os Systematics of Iron Meteorites: Chronology for Melting, Differentiation, and Crystallization in Asteroids', Geochim. Cosmochim. Acta 62, 545–554.

    Article  ADS  Google Scholar 

  • Jacobsen, S.B., and Harper, Jr., C. L.: 1996, 'Accretion and Early Differentiation History of the Earth Based on Extinct Radionuclides', in A. Basu and S. Hart (eds.), Earth Processes: Reading the Isotope Code, AGU, Washington D.C., pp. 47–74.

    Google Scholar 

  • Larimer, J.W., and Anders, E.: 1970, 'Chemical Fractionations in Meteorites-III. Major Element Fractionation in Chondrites', Geochim. Cosmochim. Acta 34, 367–387.

    Article  ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1995a, 'Precise Determinations of the Isotopic Compositions and Atomic Weights of Molybdenum, Tellurium, Tin and Tungsten Using ICP Magnetic Sector Multiple Collector Mass Spectrometry', Int. J. Mass Spec. Ion. Proc. 146/147, 35–46.

    Article  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1995b, 'Hafnium-tungsten Chronometry and the Timing of Terrestrial Core Formation', Nature 378, 771–774.

    Article  ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1996, 'Hf-W Isotopic Evidence for Rapid Accretion and Differentiation in the Early Solar System', Science 274, 1876–1879.

    Article  ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1997, 'Core Formation on Mars and Differentiated Asteroids', Nature 388, 854–857.

    Article  ADS  Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 1998, 'Tungsten Isotopes, the Initial 182Hf/180Hf of the Solar System and the Origin of Enstatite Chondrites', Mineral. Mag. 62A, 868–869.

    Google Scholar 

  • Lee, D.-C., and Halliday, A.N.: 2000, 'Hf-W Internal Isochrons for Ordinary Chondrites and the Initial 182Hf/180Hf of the Solar System', Chem. Geol. (G. J. Wasserburg Special Iss.), in press.

  • Lee, D.-C., Halliday, A.N., Snyder, G. A., and Taylor, L.A.: 1997, 'Age and Origin of the Moon', Science 278, 1098–1103.

    Article  ADS  Google Scholar 

  • Leya, I., Wieler, R., and Halliday, A.N.: 2000, 'Cosmic-ray Production of Tungsten Isotopes in Lunar Samples andMeteorites and its Implications for Hf-W Cosmochemistry', Earth Planet. Sci. Lett., in press.

  • Lin, D.N.C., and Papaloizou, J.: 1985, 'On the Dynamical Origin of the Solar System', in D. C. Black and M. S. Matthews (eds.), Protostars and Planets II, Univ. Arizona Press, Tucson, pp. 981–1072.

    Google Scholar 

  • Lugmair, G.W., and Shukolyukov, A.: 1998, 'Early Solar System Timescales According to 53Mn-53Cr Systematics', Geochim. Cosmochim. Acta 62, 2863–2886.

    Article  ADS  Google Scholar 

  • Masarik, J.: 1997, 'Contribution of Neutron-capture Reactions to Observed Tungsten Isotopic Ratios', Earth Planet. Sci. Lett. 152, 181–185.

    Article  ADS  Google Scholar 

  • Newsom, H. E., Sims, K.W.W., Noll, Jr., P.D., Jaeger, W. L., Maehr, S.A., and Bessera, T. B.: 1996, 'The Depletion of W in the Bulk Silicate', Earth. Geochm. Cosmochim. Acta 60, 1155–1169.

    Article  ADS  Google Scholar 

  • Palme, H., and Wänke, H.: 1975, 'A Unified Trace-element Model for the Evolution of the Lunar Crust and Mantle', Proc. Lunar Sci. Conf. VI, 1179–1202.

    ADS  Google Scholar 

  • Ringwood, A. E.: 1966, 'The Chemical Composition and Origin of the Earth', in P.M. Hurley (ed.), Advances in Earth Sciences, MIT Press, Cambridge, Mass., pp. 287–356.

    Google Scholar 

  • Safronov, V. S.: 1954, 'On the Growth of Planets in the Protoplanetary Cloud', Astron. Zh. 31, 499–510.

    Google Scholar 

  • Sasaki, S., and Nakazawa, K.: 1986, 'Metal-silicate Fractionation in the Growing Earth: Energy Source for the Terrestrial Magma Ocean', J. Geophys. Res. 91, B9231–9238.

    ADS  Google Scholar 

  • Shaw, G.H.: 1978, 'Effects of Core Formation', Phys. Earth Plan. Inter. 16, 361–369.

    Article  ADS  Google Scholar 

  • Solomon, S.C.: 1979, 'Formation, History and Energetics of Cores in the Terrestrial Planets', Earth Planet. Sci. Lett. 19, 168–182.

    Google Scholar 

  • Stevenson, D. J.: 1981, 'Models of the Earth's Core', Science 214, 611–619.

    ADS  Google Scholar 

  • Turekian, K.K., and Clark, S. P., Jr.: 1969, 'Inhomogeneous Accumulation of the Earth From the Primitive Solar Nebula', Earth Planet. Sci. Lett. 6, 346–348.

    Article  ADS  Google Scholar 

  • Urey, H.C.: 1966, 'The Capture Hypothesis of the Origin of theMoon', in B. G. Marsden and A.G.W. Cameron (eds.), The Earth-Moon System, Plenum, New York, pp. 210–212.

    Google Scholar 

  • Völkening, J., Köppe, M., and Heumann, K.G.: 1991, 'Tungsten Isotope Ratio Determinations by Negative Thermal Ionization Mass Spectrometry', Int. J. Mass Spec. Ion. Proc. 107, 361–368.

    Article  Google Scholar 

  • Wasson, J. T.: 1985, 'Meteorites: Their Record of Early Solar-system History', W.H. Freeman and Company. New York. pp. 251.

    Google Scholar 

  • Wetherill, G.W.: 1980, 'Formation of the Terrestrial Planets', Ann. Rev. Astron. Astrophys. 18, 77–113.

    Article  ADS  Google Scholar 

  • Wetherill, G.W.: 1986, 'Accumulation of the Terrestrial Planets and Implications Concerning Lunar Origin', in W. K. Hartmann, R. J. Phillips, and G. J. Taylor (eds.), Origin of the Moon, Lunar Planetary Institute, Houston, pp. 519–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halliday, A.N. HF-W Chronometry and Inner Solar System Accretion Rates. Space Science Reviews 92, 355–370 (2000). https://doi.org/10.1023/A:1005280220751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005280220751

Keywords

Navigation