Skip to main content
Log in

Excess Molar Volumes of (Methyl Ethanoate + 1-Chlorooctane + an n-Alkane) Ternary Mixtures and Their Constituent Binaries at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Excess molar volumes, at the temperature 25°C and atmospheric pressure over the whole composition range, are reported for the following binary mixtures: methyl ethanoate + (n-octane, n-decane); methyl ethanoate + 1-chlorooctane; 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane); and for the ternary mixtures methyl ethanoate + 1-chlorooctane + (n-heptane, n-octane, n-nonane, n-decane). The values of excess molar volumes were calculated from density and composition results. The excess volumes were utilized to test the multiproperty group-contribution model of Nitta et al. using parameter sets available in the literature. Experimental results from ternary mixtures have also been compared to predictions from several empirical and semiempirical models, which utilize, exclusively, results from binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Matos, J. L. Trenzado, M. N. Caro, E. Romano, and E. Pérez, J. Chem. Thermodyn. 26, 857 (1994).

    Google Scholar 

  2. T. Nitta, E. A. Turek, R. A. Greenkorn, and K. C. Chao, AIChE J. 23, 144 (1977).

    Google Scholar 

  3. J. Ortega, J. S. Matos, M. I. Paz-Andrade, J. Fernández, and L. Pías, Fluid Phase Equilibr. 43, 295 (1988).

    Google Scholar 

  4. J. Fernández, L. Pías, M. I. Paz-Andrade, J. L. Legido, T. Lorenzana, and J. Díez, Ber. Bunsenges. Phys. Chem. 97, 106 (1993).

    Google Scholar 

  5. J. M. Navarro, Doctoral Thesis, Universidad de Santiago, Spain (1983).

    Google Scholar 

  6. J. Ortega and J. L. Legido, Fluid Phase Equilibria 95, 175 (1994).

    Google Scholar 

  7. C. C. Tsao and J. M. Smith, Chem. Eng. Prog. Symp. Ser. 49, 107 (1953).

    Google Scholar 

  8. F. Kohler, Monatsh. Chem. 91, 738 (1960).

    Google Scholar 

  9. G. W. Toop, Trans. Met. Soc. A.I.M.E. 233, 850 (1965).

    Google Scholar 

  10. C. Colinet, D.E.S., University of Grenoble, France (1967).

    Google Scholar 

  11. M. Hillert, Phase Transformations (A.S.M., Metals Park, Ohio, 1970).

    Google Scholar 

  12. Y. M. Muggianu, M. Gambino, and J. P. Bros, J. Chim. Phys. 72, 83 (1975).

    Google Scholar 

  13. R. P. Rastogi, J. Nath, and S. S. Das, J. Chem. Eng. Data 22, 249 (1977).

    Google Scholar 

  14. M. Hillert, Calphad 4, 1 (1980).

    Google Scholar 

  15. C.-A. Hwang, J. C. Holste, K. R. Hall, and G. A. Mansoori, Fluid Phase Equilibria 62, 173 (1991).

    Google Scholar 

  16. P. Oracz, Proc. 3rd CODATA Sympo. Critical Evaluation and Prediction of Phase Equilibria in Multicomponent Systems, Budapest, 6–8 September (1987).

  17. I. C. Wei and R. L. Rowley, J. Chem. Eng. Data 29, 332 (1984).

    Google Scholar 

  18. J. Ortega and J. D. García, Can. J. Chem. 66, 1520 (1988).

    Google Scholar 

  19. M. L. G. De Soria, J. L. Zurita, M. A. Postigo, and M. Katz, Thermochim. Acta 130, 249 (1988).

    Google Scholar 

  20. M. T. Lorenzana, C. Franjo, E. Jiménez, J. Fernández, and M. I. Paz-Andrade, J. Chem. Eng. Data 39, 172 (1994).

    Google Scholar 

  21. J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents. Techniques of Chemistry, Vol. 2, 4th edn. [Wiley (Interscience), New York, 1986].

    Google Scholar 

  22. T. Treszczanowicz, Thermochim. Acta 160, 253 (1990).

    Google Scholar 

  23. R. R. Dreisbach, Physical Properties of Chemical Compounds (American Chemical Society, Washington, D.C., 1955).

    Google Scholar 

  24. A. D. Matilla, G. Tardajos, M. Díaz-Peña, and E. Aicart, J. Solution Chem. 18, 893 (1989).

    Google Scholar 

  25. T. M. Aminabhavi and B. Gopalakrishna, J. Chem. Eng. Data 39, 529 (1994).

    Google Scholar 

  26. A. J. Treszczanowicz and G. C. Benson, J. Chem. Thermodyn. 12, 173 (1980).

    Google Scholar 

  27. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  28. W. E. Acree, Jr., A. I. Zvaigzne, and P. R. Naidu, Phys. Chem. Liquid 27, 69 (1994).

    Google Scholar 

  29. D. W. Marquardt, J. Soc. Ind. Appl. Math. 2, 431 (1963).

    Google Scholar 

  30. J. Ortega, E. González, J. S. Matos, and J. L. Legido, J. Chem. Thermodyn. 24, 15 (1992).

    Google Scholar 

  31. J.-P. E. Grolier, D. Ballet, and A. Viallard, J. Chem. Thermodyn. 6, 895 (1974).

    Google Scholar 

  32. A. M. Awwad, K. A. Jbara, and A. M. Al-Dujaili, Thermochim. Acta 129, 249 (1988).

    Google Scholar 

  33. J. Ortega and E. González, J. Chem. Thermodyn. 25, 495 (1993).

    Google Scholar 

  34. J. Ortega, J. A. Peña, and J. S. Matos, J. Indian Chem. Soc. 54, 551 (1988).

    Google Scholar 

  35. A. Aucejo, E. Part, P. Medina, and M. Sancho-Bello, J. Chem. Eng. Data 31, 143 (1986).

    Google Scholar 

  36. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).

    Google Scholar 

  37. I. Cibulka, Collect. Czech. Chem. Commun. 47, 1414 (1982).

    Google Scholar 

  38. B. Jasinski and S. Malanowski, Chem. Eng. Sci. 25, 913 (1970).

    Google Scholar 

  39. V. Medlík, P. Vonka, and J. P. Novák, Collect. Czech. Chem. Commun. 47, 1029 (1982).

    Google Scholar 

  40. W. E. Acree, Jr., Thermodynamic Properties of Nonelectrolyte Solutions (Academic Press, New York, 1984).

    Google Scholar 

  41. M. T. Lorenzana, E. Jiménez, J. L. Legido, J. Fernández, L. Pías, and E. Pérez-Martell, Phys. Chem. Liquid 30, 141 (1995).

    Google Scholar 

  42. E. R. López, J. García, J. L. Legido, A. Coronas, and J. Fernández, J. Chem. Soc. Faraday Trans. 91, 2071 (1995).

    Google Scholar 

  43. A. Lainez, E. Wilhelm, G. Roux-Desgranges, and J.-P. E. Grolier, J. Chem. Thermodyn. 17, 1153 (1985).

    Google Scholar 

  44. A. Crespo, M. R. Vigil, R. G. Rubio, A. Compostizo, and M. Díaz-Peña, J. Chem. Soc. Faraday Trans. 87, 93 (1991).

    Google Scholar 

  45. T. H. Doam-Nguyen, J. H. Vera, and A. Ratcliff, J. Chem. Eng. Data 23, 218 (1978).

    Google Scholar 

  46. O. Dusart, S. Piekarski, and J.-P. E. Grolier, J. Chim. Phys. 76, 433 (1979).

    Google Scholar 

  47. J. Ortega, J. S. Matos, and J. A. Peñna, Thermochim. Acta 160, 337 (1990).

    Google Scholar 

  48. H. S. Wu and S. I. Sandler, Ind. Eng. Chem. Res. 30, 881 (1991).

    Google Scholar 

  49. H. S. Wu and S. I. Sandler, Ind. Eng. Chem. Res. 30, 889 (1991).

    Google Scholar 

  50. E. Carballo, R. A. Mosquera, J. L. Legido, and L. Romaní, J. Chem. Soc. Faraday Trans. 93, 3437 (1997).

    Google Scholar 

  51. R. F. W. Bader, Chem. Rev. 91, 893 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matos, J.S., Trenzado, J.L., Romano, E. et al. Excess Molar Volumes of (Methyl Ethanoate + 1-Chlorooctane + an n-Alkane) Ternary Mixtures and Their Constituent Binaries at 25°C. Journal of Solution Chemistry 30, 263–279 (2001). https://doi.org/10.1023/A:1005279500454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005279500454

Navigation