Skip to main content

The Extreme Ultraviolet Imager Investigation for the IMAGE Mission

Abstract

The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots’ in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUV’s spatial resolution is 0.6° or ∼0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s−1 Rayleigh−1, sufficient to map the position of the plasmapause with a time resolution of 10 min.

This is a preview of subscription content, access via your institution.

References

  • Barstow, M. A., Holberg, J. B. and Koester, D.,: 1995, Monthly Notices Roy. Astron. Soc. 274, L31.

    Google Scholar 

  • Barstow, M. A. and Sansom, A. E.: 1990, SPIE 1344 244.

    Google Scholar 

  • Barstow, M. A., Fraser, G. W. and Milward S. R.: 1985, SPIE 597, 352.

    Google Scholar 

  • Bloch, J. J., Ameduri, F., Priedhorsky, G.W., Roussel-Dupre, D., Smith, B. W., Siegmund, O. H. W., Cully, S., Warren, J. and Gaines, G. A.: 1990, SPIE 1344, 154.

    Google Scholar 

  • Carpenter, D. L., Giles, B. L., Chappell, C. R., Decreau, P. M. E., Anderson, R. R., Persoon, A. M., Smith, A. J., Corcuff, Y. and Canu, P.: 1993, J. Geophys. Res. 98, 19,243–19,271.

    Google Scholar 

  • Carpenter, D. L.: 1995, EOS, Trans. Am. Geophys. Union 76(9), 89–92.

    Google Scholar 

  • Chakrabarti, S., Paresce, F., Bowyer, S., Chiu, S. and Aikin, A.: 1982, Geophys. Res. Lett. 9, 151.

    Google Scholar 

  • Fennimore, A., Allred, D., Turley, R. S., Vazquez, C. and Chao, B.: 1999, Appl. Optics (submitted).

  • Furst, M. L., Graves, R. M., Canfield, L. R. and Vest, R. E.: 1995, Rev. Sci. Instrum. 66, 2257.

    Google Scholar 

  • Fok, M.-C., Moore, T. E., Kozyra, J. U., Ho, G. C. and Hamilton, D. C.: 1995, J. Geophys. Res. 100, 9619–9632.

    Google Scholar 

  • Fraser, G. W., Pearson, G. F. and Lees, J. E.: 1987, Nucl. Instrum. Meth. A254, 447.

    Google Scholar 

  • Fraser, G. W.: 1984, Nucl. Instrum. Meth. 221, 115.

    Google Scholar 

  • Gladstone, G. R., McDonald, J. S., Boyd, W. T. and Bowyer, S.: 1994, Geophys. Res. Lett. 21, 461.

    Google Scholar 

  • Gullikson, E. M., Korde, R., Canfield, L. R. and Vest, R. E.: 1996, J. Electron Spect. Rel. Phen. 80, 313.

    Google Scholar 

  • Khazanov, G. V. and Liemohn, M. W.: 1995, J. Geophys. Res. 100, 9669–9681.

    Google Scholar 

  • Lunt, S.: 1999, The Use of Genetic Algorithms in Multilayer Mirror Optimization, BYU Honors Thesis.

  • Lunt, S. and Turley, R. S.: 1998, Physics of X-Ray Multilayer Structures 4.

  • Lunt, S. and Turley, R. S.: 1999a, Proc. Utah Acad. (submitted).

  • Lunt, S. and Turley, R. S.: 1999b, J. X-Ray Sci. and Tech. (submitted).

  • Meier, R. R. and Weller, C. S.: 1974, J. Geophys. Res. 79 1575.

    Google Scholar 

  • Meier, R. R., Nicholas, A. C., Picone, J. M., Melendez-Alvira, D. J., Ganguli, G. I., Reynolds, M. A. and Roelof, E. C.: 1998, J. Geophys. Res. 103, 17505.

    Google Scholar 

  • Priedhorsky, G. W., Bloch, J. J., Smith, B. W., Strobel, K., Ulibarri, M., Chavez, J., Evans, E., Siegmund, O. H. W., Marshall, H., Vallerga, J. and Vedder, P.: 1988, SPIE 982, 188.

    Google Scholar 

  • Sandel, B. R., Drake, V. A., Broadfoot, A. L., Hsieh, K. C. and Curtis, C. C.: 1993, Remote Sensing Rev. 8, 147.

    Google Scholar 

  • Siegmund, O. H. W.: 1989, SPIE 1072, 111.

    Google Scholar 

  • Siegmund, O. H. W.: 1988, SPIE 982, 108.

    Google Scholar 

  • Siegmund, O. H. W., Vallerga, J. and Lampton, M.: 1988, IEEE Trans. Nucl. Sci. NS-35, 524.

    Google Scholar 

  • Siegmund, O. H. W., Vallerga J., and Jelinsky, P.: 1986a, SPIE 689, 40.

    Google Scholar 

  • Siegmund, O. H. W., Lampton, M., Bixler, J., Chakrabarti, S., Vallerga, J., Bowyer, S. and Malina, R. F.: 1986b, J. Opt. Soc. Am. A3, 2139.

    Google Scholar 

  • Siegmund, O. H. W., Coburn, K. and Malina, R. F.: 1985 IEEE Trans. Nucl Sci. NS-32, 443.

    Google Scholar 

  • Skulina, K. M.: 1995, Appl. Optics 34, 3727.

    Google Scholar 

  • Squires, M. B.: 1999, On Determining the Optical Constants of Sputtered U and a-Si at 304 and 584 å, BYU Honors Thesis.

  • Thomsen, M. F., McComas, D. J., Borovsky, J. E. and Elphic, R. C.: 1998, AGU Monograph: Geospace Mass and Energy Flow 104, 355–369.

    Google Scholar 

  • Vallerga, J. V., Vedder, P.W. and Siegmund, O.H.W.: 1992, SPIE 1742, 392.

    Google Scholar 

  • Williams, D. J.: 1990, in B. Hultqvist and C. G. Falthammer (eds.), Magnetospheric Physics, Plenum Press, New York, pp. 83–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sandel, B., Broadfoot, A., Curtis, C. et al. The Extreme Ultraviolet Imager Investigation for the IMAGE Mission. Space Science Reviews 91, 197–242 (2000). https://doi.org/10.1023/A:1005263510820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005263510820

Keywords

  • Time Resolution
  • Global Scale
  • Equatorial Plane
  • Imager Investigation
  • Wide Field