Skip to main content
Log in

Generalized Model of Damage to Structural Materials under Complex Low-Cycle Loading

  • Published:
Strength of Materials Aims and scope

Abstract

We present a theoretical substantiation of a generalized model of damage to structural materials under the conditions of complex low-cycle loading. It is shown that the surface theory of plastic flow with Pisarenko–Lebedev-type surfaces is preferable for the description of damage in stabilized cycles under different fracture conditions as compared with the use of Mises-type surfaces. We also present the procedure for determining the principal parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. T. Troshchenko, A. Ya. Krasovskii, and V. A. Strizhalo, Resistance of Materials to Deformation and Fracture [in Russian], Vol. 2, Naukova Dumka, Kiev (1994).

    Google Scholar 

  2. N. A. Makhutov, A. Z. Vorob'ev, and M. M. Gadenin, Strength of Structures under Low-Cycle Loading [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  3. A. P. Gusenkov and P. I. Kotov, Low-Cycle Fatigue under Nonisothermal Loading [in Russian], Mashinostroenie, Moscow (1983).

    Google Scholar 

  4. A. G. Kazantsev, “Numerical analysis of low-cycle fatigue for nonproportional loading modes,” Probl. Prochn., No. 6, 31–36 (1989).

    Google Scholar 

  5. A. A. Movchan, “On low-cycle fatigue under the conditions of nonproportional symmetric deformation,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 102–108 (1983).

    Google Scholar 

  6. N. S. Mozharovskii, E. A. Antipov, and N. I. Bobyr', Creep and Durability of Materials under Preset Loading [in Russian], Vyshcha Shkola, Kiev (1982).

    Google Scholar 

  7. A. A. Lebedev, N. G. Chausov, I. O. Boginich, and S. A. Nedoseka, “Complex evaluation of the degree of damage to the material in the process of plastic deformation,” Probl. Prochn., No. 5, 23–30 (1996).

    Google Scholar 

  8. K. Golos, “Energetic formulation of fatigue strength criterion,” Archiwun Budowy Maszyn, 35, No. 5, 5–15 (1988).

    Google Scholar 

  9. Y. Lemaitre, “Coupled elasto-plasticity and damage constitutive equations,” Comp. Meth. Appl. Mech. Eng., 51, 31–49 (1985).

    Google Scholar 

  10. L. M. Kuchanov, “On the time of fracture under the conditions of creep,” Izd. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8, 26–35 (1958).

    Google Scholar 

  11. Yu. N. Rabotnov, Creep of Structural Members [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  12. Y. Lemaitre, “Continual model of damage used for the numerical analysis of fracture of plastic materials,” Trans. ASME, Theor. Eng. Comp., 107, No. 1, 90–98 (1985).

    Google Scholar 

  13. N. I. Bobyr’ and T. B. Ponamarenko, “Equation of state of structural materials under complex low-cycle loading,” Progres. Tekh. Tekhnolog. Mashinobud., No. 2, 58–67 (1998).

    Google Scholar 

  14. D. Socie, P. Kurath, and J. Koch, A Multiaxial Fatigue Damage Parameter. Biaxial and Multiaxial Fatigue, EGF3, Mech. Eng. Publ., London (1989), pp. 535–550.

    Google Scholar 

  15. V. A. Strizhalo, Cyclic Strength and Creep of Metals under the Conditions of Low-Cycle Loading at Low and High Temperatures [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  16. Yu. G. Korotkikh, “Description of the processes of accumulation of damage in the material in the course of isothermal viscoplastic deformation,” Probl. Prochn., No. 1, 18–23 (1985).

    Google Scholar 

  17. D. Socie, “Models of fracture under the conditions of multiaxial fatigue,” Trans. ASME, Theor. Eng. Comp., No. 3, 9–20 (1988).

    Google Scholar 

  18. A. G. Kazanzev and N. A. Makhutov, “Low-cycle fatigue of anisotropic steel under nonproportional loading,” in: Proc. of the 5th Internat. Conf. on Biaxial/ Multiaxial Fatigue, Vol. 1 (1997), pp. 125–139.

    Google Scholar 

  19. A. N. Romanov, Fracture under Low-Cycle Loading [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  20. V. V. Novozhilov, “On the prospects of the phenomenological approach to the problem of fracture,” in: Mechanics of Deformable Bodies and Structures [in Russian], Mashinostroenie, Moscow (1975), pp. 349–359.

    Google Scholar 

  21. N. A. Makhutov, M. M. Gadenin, D. A. Gokhfel'd, et al., Equation of State under Low-Cycle Loading [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  22. V. L. Kolmogorov, Mechanics of Metal Forming [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  23. S. R. Bodner and I. Lindholm, “Damage-increment criterion for the time-dependent fracture of materials,” Trans. ASME, Theor. Eng. Comp., No. 2, 51–58 (1976).

    Google Scholar 

  24. Yu. N. Shevchenko and R. G. Terekhov, Physical Equations of Thermoviscoplasticity [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  25. A. A. Movchan, “Low-cycle fatigue for complex and, in particular, nonproportional paths of plastic deformation,” Deposited at VINITI, No. 2176–80dep, Moscow (1980).

  26. Yu. N. Rabotnov, Mechanics of Deformable Bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  27. C. L. Chow and J. Wang, “An anisotropic theory of continuum damage mechanics for ductile fracture,” J. Eng. Fract. Mech., 27, No. 5, 547–558 (1987).

    Google Scholar 

  28. V. V. Zhu and S. A. Cescotto, “Fully coupled elasto-visco-plastic damage theory for anisotropic materials,” Int. J. Solids Struct., 32, No. 11, 1607–1641 (1995).

    Google Scholar 

  29. V. T. Troshchenko, A. A. Lebedev, V. A. Strizhalo, G. V. Stepanov, and V. V. Krivenyuk, Mechanical Behavior of Materials for Various Types of Loading [in Russian], Logos, Kiev (2000).

    Google Scholar 

  30. R. A. Arutyunyan, “Fracture criteria under the conditions of creep,” Probl. Prochn., No. 9, 42–45 (1982).

    Google Scholar 

  31. N. I. Bobyr', “Vector and scalar properties of structural materials under complex low-cycle loading,” Progres. Tekh. Tekhnolog. Mashinobud., 3, 48–58 (1998).

    Google Scholar 

  32. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in the Complex Loaded State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  33. Z. Mroz, “Hardening and accumulation of damage in metals under monotonic and cyclic loads,” Trans. ASME, Theor. Eng. Comp., 105, No. 2, 44–50 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobyr', N.I. Generalized Model of Damage to Structural Materials under Complex Low-Cycle Loading. Strength of Materials 32, 480–486 (2000). https://doi.org/10.1023/A:1005262417353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005262417353

Keywords

Navigation