Skip to main content
Log in

Estimation of Solubility of Carbon Dioxide in Polar Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of CO2 in polar solvents is poorly predicted by all estimation methods that use only properties of the pure components. It is thought that this is because CO2 molecules, although they do not have a permanent dipole moment, behave like electrical multipoles as a consequence of their strongly polar bonds. An equation, proposed in a previous paper, for estimating the activity coefficient of a nonpolar gas dissolved in a polar liquid is modified by adding a term containing the quadrupole moment of the gas molecule. Errors in estimating gas solubilities on that basis are less than 20%, except for the solvents in which specific interactions (e.g., acid–base interactions) are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Gibanel, M. C. Lopez, F. M. Royo, J. Pardo, and J. S. Urieta, Fluid Phase Equil. 87, 285 (1993).

    Google Scholar 

  2. L. W. Reeves and J. H. Hildebrand, J. Amer. Chem. Soc. 79, 1313 (1957); (b) G. Archer and J. H. Hildebrand, J. Phys. Chem. 67, 1830 (1963); (c) R. G. Linford and J. H. Hildebrand, J. Phys. Chem. 73, 4410 (1969); (d) H. Hiraoka and J. H. Hildebrand, J. Phys. Chem. 68, 213 (1964); (e) J. C. Gjaldbaek and J. H. Hildebrand, J. Amer. Chem. Soc. 71, 3147 (1949).

    Google Scholar 

  3. J. C. Gjaldbaek and H. Nieman, Acta Chem. Scand. 12, 611 (1958); (b) A. Lannung and J. C. Gjaldbaek, Acta Chem. Scand. 14, 1121 (1960).

    Google Scholar 

  4. J. M. Prausnitz and F. H. Shair, AIChE J. 7, 682 (1961); (b) J. M. Prausnitz, J. Phys. Chem. 66, 640 (1962).

    Google Scholar 

  5. R. Vîlcu and St. Perisanu, Polish J. Chem. 61, 281 (1987); (b) R. Vîlcu and St. Perisanu, Rev. Roum. Chim. 33, 351 (1988).

    Google Scholar 

  6. R. Pierotti, J. Phys. Chem. 67, 1840 (1963).

    Google Scholar 

  7. S. Goldman, J. Chem. Phys. 67, 727 (1977).

    Google Scholar 

  8. T. Boublik and B. C. Y. Lu, J. Phys. Chem. 82, 2801 (1978).

    Google Scholar 

  9. S. Goldman, J. Solution Chem. 6, 461 (1977).

    Google Scholar 

  10. G. Nocon, U. Wedlich, J. Gmehling, and U. Onken, Ber. Bunsenges. Phys. Chem. 87, 17 (1983).

    Google Scholar 

  11. B. Sander, S. Skold-Jorgensen, and P. Rasmusen, Fluid Phase Equil. 11, 105 (1983).

    Google Scholar 

  12. C. L. de Ligni, N. G. van der Veen, and J. C. Houvelingen, I.E.C. Fundamentals 15, 336 (1976).

    Google Scholar 

  13. J. C. Gjaldbaeck and E. K. Anderson, Acta Chem. Scand. 8, 1389 (1954); (b) J. C. Gjaldbaeck and H. Nieman, Acta Chem. Scand. 12, 1015 (1958).

    Google Scholar 

  14. L. C. Yen and J. J. McKetta, AIChE J. 8, 501 (1962).

    Google Scholar 

  15. R. Vîlcu and St. Perisanu, Polish J. Chem. 54, 2043 (1980).

    Google Scholar 

  16. F. Gibanel, M. C. Lopez, F. M. Royo, V. Rodriguez, and J. S. Urieta, J. Solution Chem. 23, 1247 (1994); (b) F. Gibanel, M. C. Lopez, F. M. Royo, J. Santafe, and J. S. Urieta, J. Solution Chem. 22, 211 (1993); (c) L. P. Lizano, M. C. Lopez, F. M. Royo, and J. S. Urieta, J. Solution Chem. 19, 721 (1990); (d) M. C. Lopez, M. A. Gallardo, J. S. Urieta, and C. Gutierez Losa, J. Chem. Eng. Data, 34, 198 (1989); (e) M. C. Lopez, M. A. Gallardo, J. S. Urieta, and C. Guiterez Losa, J. Chem. Eng. Data, 32, 472 (1987); (f) M. A. Gallardo, M. C. Lopez, J. S. Urieta, and C. Gutierez Losa, Can. J. Chem. 67, 809 (1989); (g) M. A. Gallardo, J. M. Melendo, J. S. Urieta, and C. Gutierez Losa, Can. J. Chem. 65, 2198 (1987); (h) M. A. Gallardo, M. C. Lopez, J. S. Urieta, and C. Guiterez Losa, Fluid Phase Equil. 58, 159 (1990); (i) M. A. Gallardo, M. C. Lopez, J. S. Urieta, and C. Gutierez Losa, Fluid. Phase Equil. 50, 223 (1989); (j) J. F. Gibanel, J. S. Urieta, and C. Gutierez Losa, J. Chem. Phys. 78, 171 (1981).

    Google Scholar 

  17. T. Katayama, M. Tomosaburo, and T. Nitta, Kagaku Kogaku 31, 559 (1967).

    Google Scholar 

  18. C. H. Twu and K. E. Gubbins, Chem. Eng. Sci. 33, 879 (1978).

    Google Scholar 

  19. K. C. Chao and J. D. Seader, AIChE J. 7, 598 (1961).

    Google Scholar 

  20. G. Maffiolo, J. Vidal, and L. Asselineau, Chem. Eng. Sci. 30, 625 (1975).

    Google Scholar 

  21. H. C. van Ness and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions, (McGraw-Hill, New York, 1982), pp. 126–133.

    Google Scholar 

  22. C. Tsonopoulos, AIChE J. 20, 263 (1974); AIChE J. 21, 827 (1975).

    Google Scholar 

  23. A. D. Buckingham and L. Disch, Proc. Royal Soc. (London) A273, 275 (1963).

    Google Scholar 

  24. J. M. Prausnitz, T. Anderson, E. Greens, C. Eckert, R. Hsieh, and J. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria (Prentice Hall, Englewood Cliffs, NJ, 1980).

    Google Scholar 

  25. J. Brandrup and J. H. Immergut, Polymer Handbook, 3rd edn. [Wiley (Interscience), New York, 1989].

    Google Scholar 

  26. E. Wilhelm and R. Battino, Chem. Rev. 73, 1 (1973).

    Google Scholar 

  27. J. M. Prausnitz, C. A. Eckert, V. R. Orye, and J. P. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid Equilibria (Prentice Hall, Englewood Cliffs, NJ, 1967).

    Google Scholar 

  28. W. Gerrard, Solubility of Gases and Liquids. A Graphic Approach (Plenum, London, 1976).

    Google Scholar 

  29. P. G. T. Fogg and W. Gerrard, Solubility of Gases in Liquids (J Wiley, Chichester, 1991).

    Google Scholar 

  30. I. Bhugun, D. Lexa, and J. M. Saveant, Anal. Chem. 66, 3994 (1994).

    Google Scholar 

  31. A. A. Polyakov, T. N. Tyvina, V. V. Fokina, and A. A. Naumova, Zh. Prikl. Khim. 59, 1355 (1986).

    Google Scholar 

  32. S. D. Fink and H. C. Hershey, I.E.C. Res. 29, 295 (1990).

    Google Scholar 

  33. I. I. Vasilieva, A. A. Naumova, A. A. Polyakov, T. N. Tyvina, and V. V. Fokina, Zh. Prikl. Khim. 61, 441 (1988).

    Google Scholar 

  34. W. L. Weng and M. J. Lee, I.E.C. Res. 31, 2769 (1992).

    Google Scholar 

  35. G. H. Graaf, H. J. Smit, E. J. Stamhuis, and A. C. M. Beenackers, J. Chem. Eng. Data, 39, 158 (1992).

    Google Scholar 

  36. J. P. Montfort, J. R. Varela Ham, and J. L Perez Meseguer, J. Chim. Phys. Phys-Chim. Biol. 74, 409 (1977).

    Google Scholar 

  37. C. L. De Ligni and N. G. Van der Veen, Chem. Eng. Sci. 27, 391 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perisanu, S.T. Estimation of Solubility of Carbon Dioxide in Polar Solvents. Journal of Solution Chemistry 30, 183–192 (2001). https://doi.org/10.1023/A:1005256711492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005256711492

Navigation