Skip to main content
Log in

Atmospheric Bronze and Copper Corrosion as an Environmental Indicator. A Study Based on Chemical and Sulphur Isotope Data

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Corrosion products have been takenfrom 130 copper or bronze outdoor objects all overEurope. Their chemical composition and crystalsymmetry have been determined by means of scanning electron microscopy (SEM/EDS) and X-ray powderdiffraction. Data on location, sampling, objectcharacteristics, general environment and air pollutionlevel; type, colour and chemical composition of thecorrosion layers have been obtained and evaluated by multivariate statistical analysis. The resultsverify that the highest air pollution levels are usually associated with the occurrence of thick,black or dark grey corrosion layers on copper orbronze objects, preferentially containing soot, ironoxide hydroxides, and antlerite,Cu3(SO4)(OH)4. Pale green corrosionusually contains brochantite,Cu4(SO4)(OH)6, and is rather associatedwith less polluted areas. Atacamite, a copper hydroxide chloride with the chemical formula Cu2Cl(OH)3, is preferentially observed in coastal regions.In addition, sulphur isotope analyses have beenperformed on eleven corrosion samples from citycenters. The δ34S values are typically inthe region from +4 to +6‰ relative to the sulphurisotope standard CDT (Canyon Diablo Troilite) with amean value of 4.7±1.2 (1σ), therebyindicating that the sulphur in the corrosion layers,in the form of brochantite or antlerite, mainlyoriginates from a similar source despite geographicvariation, most likely sulphur contained in air pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albano, C.: 1995, Personal communication. Umetrics, Umeå, Sweden.

    Google Scholar 

  • Andersson, P., Torssander, P. and Ingri, J.: 1992, Hydrobiologia 235/236, 205.

    Google Scholar 

  • Bužek, F. and Srámek, J.: 1985, Studies in Conserv. 30, 171.

    Google Scholar 

  • Coleman, M. and Moore, M. P.: 1978, Analytical Chemistry 50, 1594.

    Google Scholar 

  • Del Monte, M., Sabbioni, C. and Vittori, O.: 1981, Atmospheric Environment 15, 645.

    Google Scholar 

  • Del Monte, M., Sabbioni, C. and Vittori, O.: 1984, The Science of Total Environment 36, 369.

    Google Scholar 

  • Gettens, R. J.: 1933, Technical Studies in the field of Fine Arts 2, 31.

    Google Scholar 

  • Graedel, R. J.: 1987, Corrosion Science 27, 721.

    Google Scholar 

  • Graedel, T. E., Nassau, K. and Franey, J. P.: 1987, Corrosion Science 27, 639.

    Google Scholar 

  • Grennfeld, P., Rodhe, H., Thörnelöf, E. and Wisniewski, J. (eds.): 1995, Acid Reign '95. Proceedings from the 5th International Conference on Acidic Deposition, Kluwer Academic Publishers, Vol. 1–4, Dordrecht, The Netherlands.

    Google Scholar 

  • Ingri, J., Torssander, P., Mörth, C. M., Andersson, P. and Kusakabe, M.: 1995, Thesis 290, Inst. of Geology, University of Stockholm.

  • Krouse, H. R. and Grinenko, V. A. (eds.): 1991, Stable IsotopesNatural and Anthropogenic Sulphur in the Environment, J. Wiley & Sons, Chichester–New York–Brisbane–Toronto.

    Google Scholar 

  • Longinelli, A. and Bartelloni, M.: 1978, Water, Air, and Soil Pollut. 10, 335.

    Google Scholar 

  • Mattsson, E.: 1992, Electrochemistry and Corrosion Science, Swedish Corrosion Institute, Bulletin No. 100, Stockholm.

    Google Scholar 

  • Matyi, R. J. and Baboian, R.: 1986, Powder Diffr. 1(4), 299.

    Google Scholar 

  • Mörth, C. M.: 1999, Personal communication (Department of Geology, University of Stockholm).

  • Nielsen, T.: 1996, Atmospheric Environment 30, 3481.

    Google Scholar 

  • Nord, A. G.: 1995, Geol. Fören. Stockholm Förhandl. (GFF) 117, 43.

    Google Scholar 

  • Nord, A. G. and Ericsson, T.: 1993, Studies in Conservation 38, 25.

    Google Scholar 

  • Nord, A. G., Svärdh, A. and Tronner, T.: 1994, Atmospheric Environment 28, 2615.

    Google Scholar 

  • Nord, A. G. and Tronner, K.: 1995, Water, Air, and Soil Pollut. 85, 2719.

    Google Scholar 

  • Pourbaix, M.: 1977, NBS Special Publ. 479, 1–16. US Dept. of Commerce, National Bureau of Standards, Washington DC.

    Google Scholar 

  • Pye, K. and Schiavon, N.: 1989, Nature 342, 663.

    Google Scholar 

  • Saiz-Jimenez, C.: 1993, Atmospheric Environment 27B, 77.

    Google Scholar 

  • Shennan, S.: 1988, Quantifying Archaeology, Edinburgh University press.

  • Strandberg, H.; 1997, Dissertation, University of Göteborg, Sweden.

    Google Scholar 

  • Wold, S., Esbensen, K. and Geladi, P.: 1987, Chemimetrics and Intelligent Laboratory Systems 2, 37.

    Google Scholar 

  • Wold, S., Albano, C. and Dunn, W. J.: 1989, ‘Multivariate Data Analysis: Converting Chemical Data Tables to Plots’, in Computer Applications in Chemical Research and Education, A. Hültig Verlag, Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nord, A.G., Tronner, K. & Boyce, A.J. Atmospheric Bronze and Copper Corrosion as an Environmental Indicator. A Study Based on Chemical and Sulphur Isotope Data. Water, Air, & Soil Pollution 127, 193–204 (2001). https://doi.org/10.1023/A:1005254913598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005254913598

Navigation