Skip to main content
Log in

Method of Asymptotic Interpolation in Problems of Chemical Hydrodynamics and Mass Transfer

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new modification of the asymptotic interpolation method is put forward, which uses the known two-sided asymptotics of the solution of a problem and the values of the function in an intermediate region. Special switching functions are suggested for joining the asymptotic solutions. Their constants are determined from their values at specified reference points. By way of an example, this method is applied to some problems of chemical hydrodynamics and mass transfer that have no exact analytical solution. Approximate solutions are obtained for the entire variation range of the characteristic dimensionless parameter. Their accuracy was estimated by collating them with the results of numerical computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Van Dyke, M., Perturbation Methods in Fluid Mechanics, New York: Academic, 1964. Translated under the title Metody vozmushchenii v mekhanike zhidkosti, Moscow: Mir, 1967.

    Google Scholar 

  2. Cole, J.D., Perturbation Methods in Applied Mathematics, Boston: Ginn, 1968. Translated under the title Metody vozmushchenii v prikladnoi matematike, Moscow: Mir, 1972.

    Google Scholar 

  3. Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973. Translated under the title Metody vozmushchenii, Moscow: Mir, 1976.

    Google Scholar 

  4. Polyanin, A.D. and Dil'man, V.V., Asymptotic Interpolation in Problems of Mass and Heat Transfer and Fluid Dynamics, Teor. Osn. Khim. Tekhnol., 1985, vol. 19, no. 1, p. 3.

    Google Scholar 

  5. Dil'man, V.V. and Polyanin, A.D., Metody model'nykh uravnenii i analogii v khimicheskoi tekhnologii (Methods of Modeling Equations and Analogies in Chemical Engineering), Moscow: Khimiya, 1988.

    Google Scholar 

  6. Polyanin, A.D. and Dilman, V.V., Methods of Modeling Equations and Analogies in Chemical Engineering, Boca Raton: CRC, 1994.

    Google Scholar 

  7. Korn, G. and Korn, T., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1961. Translated under the title Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Moscow: Nauka, 1984.

    Google Scholar 

  8. Polyanin, A.D. and Vyaz'min, A.V., Mass and Heat Transfer to Particles in a Flow, Teor. Osn. Khim. Tekhnol., 1995, vol. 29, no. 2, p. 141.

    Google Scholar 

  9. Polyanin, A.D. and Vyaz'min, A.V., Mass and Heat Transfer between a Drop or Bubble and a Flow, Teor. Osn. Khim. Tekhnol., 1995, vol. 29, no. 3, p. 249.

    Google Scholar 

  10. Oellrich, L., Schmidt-Traub, H., and Brauer, H., Theoretische Berechnung des Stofftransport in der Umgebung einer Einzelblase, Chem. Eng. Sci., 1973, vol. 28, no. 3, p. 711.

    Google Scholar 

  11. Abramzon, B.M. and Fishbein, G.A., Some Problems of Convective Diffusion to a Spherical Particle at Re ≥1000, Inzh.-Fiz. Zh., 1977, vol. 32, no. 6, p. 1053.

    Google Scholar 

  12. Masliyah, J.H. and Epstein, N., Numerical Solution of Heat and Mass Transfer from Spheroids in Steady Axisymmetric Flow, Prog. Heat Mass Transfer, 1972, vol. 6, p. 613.

    Google Scholar 

  13. Schlichting, H., Boundary-Layer Theory, New York: McGraw-Hill, 1968. Translated under the title Teoriya pogranichnogo sloya, Moscow: Nauka, 1974.

    Google Scholar 

  14. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow: Nauka, 1987.

    Google Scholar 

  15. Reichardt, H., Vollständige Darstellung der turbulent Geschwindigkeits Verteilung in glatten Leitungen, Z. Angew. Math. Mech., 1951, vol. 31, no. 7, p. 208.

    Google Scholar 

  16. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Fluid Mechanics), St. Petersburg: Gidrometeoizdat, 1996, part 1.

    Google Scholar 

  17. Kármán, Th., Mechanische Äulichkeit und Turbulenz, Int. Kongress für technische Mechanik, Stockholm, 1930, vol. 1, p. 85.

    Google Scholar 

  18. Frost, W. and Moulden, T.H., Handbook of Turbulence, New York: Plenum, 1977.

    Google Scholar 

  19. Lesieur, M., Turbulence in Fluids, Dordrecht: Kluwer, 1997.

    Google Scholar 

  20. Kutateladze, S.S., Teploperedacha i gidrodinamicheskoe soprotivlenie (Heat Transfer and Hydrodynamic Resistance), Moscow: Energoatomizdat, 1990.

    Google Scholar 

  21. Reynolds, A.J., Turbulent Flows in Engineering, London: Wiley, 1974. Translated under the title Turbulentnye techeniya v inzhenernykh prilozheniyakh, Moscow: Energiya, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyaz'min, A.V., Denisov, I.A. & Polyanin, A.D. Method of Asymptotic Interpolation in Problems of Chemical Hydrodynamics and Mass Transfer. Theoretical Foundations of Chemical Engineering 35, 1–8 (2001). https://doi.org/10.1023/A:1005252031967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005252031967

Keywords

Navigation