Skip to main content
Log in

Apparent Molar Volumes and Adiabatic Compressibilities of Crown Ethers and Glymes in H2O and D2O at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent molar volumes and adiabatic compressibilities of 18-Crown-6, 15-Crown-5, 12-Crown-4, tetraglyme, and triglyme were measured at 25°C in H2O and D2O. The contribution of the -CH2CH2O- group to the limiting partial molar volumes and compressibilities of cyclic and open-chain ethers in both solvents are compared and solvent isotope effects calculated. It is concluded, based on the compressibility results, that there is a subtle difference between the hydration of the ethene oxde group in cyclic and open-chain ethers and that this difference persists in D2O. These results indicate that the calculation of limiting apparent molar compressibilities using additivity schemes will have to account for whether the group is in a cyclic or open-chain compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. J. Pedersen, J. Amer. Chem. Soc. 89, 7017 (1969).

    Google Scholar 

  2. C. J. Pedersen, J. Amer. Chem. Soc. 89, 2495 (1967).

    Google Scholar 

  3. E. Weter et al., eds., in Crown Ether and Analogs (Wiley, New York, 1989).

    Google Scholar 

  4. A. C. Knipe, J. Chem. Educat. 53, 618 (1976).

    Google Scholar 

  5. J. Burgess, ed., in Ions in Solution: Basic Principles of Chemical Interactions (Wiley, New York, (1988).

  6. T. W. N. Bieze, A. C. Barnes, C. J. M. Huige, J. E. Enderby, and J. C. Leyte, J. Phys. Chem. 98, 6568 (1994).

    Google Scholar 

  7. A. C. Barnes, T. W. N. Bieze, J. E. Enderby, and J. C. Leyte, J. Phys. Chem. 98, 11527 (1994).

    Google Scholar 

  8. P. J. Bernal and A. Van Hook, J. Chem. Thermodyn. 18, 955 (1986).

    Google Scholar 

  9. J. G. Mathieson and B. E. Conway, J. Chem. Soc. Faraday Trans. I, 70, 752 (1974).

    Google Scholar 

  10. B. E. Conway and L. H. Laliberte, Trans. Faraday Soc. 66, 3032 (1970).

    Google Scholar 

  11. J. G. Mathieson and B. E. Conway, J. Solution Chem. 3, 781 (1974).

    Google Scholar 

  12. O. Likhodi and T. V. Chalikian, J. Amer. Chem. Soc. 121, 1156 (1999).

    Google Scholar 

  13. K. J. Patil, S. R. Heil, M. Holz, and M. D. Zeidler, Ber. Bunsenges. Phys. Chem. 101, 91 (1997).

    Google Scholar 

  14. K. J. Patil, R. B. Pawar, and G. S. Gokavi, J. Mol. Liquids 75, 143 (1998).

    Google Scholar 

  15. P. Bernal, A. Bunn, J. Logan, and J. McCluan, J. Solution Chem. 29, 651 (2000).

    Google Scholar 

  16. S. J. Ashcroft, D. R. Booker, and J. C. Robin Turner, J. Chem. Soc. Faraday Trans. 86, 145 (1990).

    Google Scholar 

  17. H. Hoiland and E. Vikingstad, J. Chem. Soc. Faraday Trans. I, 71, 2007 (1995).

    Google Scholar 

  18. H. Hoiland, in Thermodynamic Data for Biochemistry and Biotechnology, H.-Ju. Hinz, ed. (Springer, Berlin, 1986), p. 17.

    Google Scholar 

  19. H. Hoiland, in Thermodynamic Data for Biochemistry and Biotechnology, H.-Ju. Hinz, ed. (Springer, Berlin, 1986), p. 129.

    Google Scholar 

  20. H. Hoiland and E. Vikingstad, J. Chem. Soc. Faraday Trans. I, 72, 1441 (1976).

    Google Scholar 

  21. T. V. Chalikian, A. P. Sarvazyan, T. Funck, and K. J. Breslauer, Biopolymers 34, 541 (1994).

    Google Scholar 

  22. T. V. Chalikian, A. P. Saivazyan, and K. J. Breslauer, Biophys. Chem. 51, 89 (1994).

    Google Scholar 

  23. T. V. Chalikian, A. P. Saivazyan, and K. J. Breslauer, J. Phys. Chem. 97, 13017 (1993).

    Google Scholar 

  24. D. P. Kharakoz, J. Phys. Chem. 95, 5634 (1991).

    Google Scholar 

  25. A. P. Sarvazyan, V. A. Buckin, and P. Hemmes, J. Amer. Chem. Soc. 84, 692 (1980).

    Google Scholar 

  26. S. Cabani, G. Conti, and E. Matteoli, J. Solution Chem. 5, 751 (1976).

    Google Scholar 

  27. S. Cabani, G. Conti, and E. Matteoli, J. Solution Chem. 8, 11 (1979).

    Google Scholar 

  28. S. Harada, T. Nakajima, T. Komatsu, and T. Nakagawa, J. Solution Chem. 7, 463 (1978).

    Google Scholar 

  29. K. Fukuhara, M. Tachikake, H. Matsuma, and S. Matsumoto, J. Phys. Chem. 99, 8617 (1995).

    Google Scholar 

  30. K. Fukuhara, K. Ikeda, and H. Matsuura, Spectrochim. Acta P A50, 1619 (1995).

    Google Scholar 

  31. Y. Miyazaki and H. Matsuma, Bull. Chem. Soc. Jpn. 64, 288 (1991).

    Google Scholar 

  32. T. Kowall and A. J. Geiger, J. Phys. Chem. 98, 6216 (1994).

    Google Scholar 

  33. K. Patil and R. Pawar, J. Phys. Chem. B103, 2256 (1999).

    Google Scholar 

  34. T. V. Chalikian and K. J. Breslauer, Proc. Natl. Acad. Sci. USA, 93, 1012 (1996).

    Google Scholar 

  35. T. V. Chalikian, M. Tatrov, R. Abagyan, and K. J. Breslauer, J. Mol. Biol. 260, 588 (1996).

    Google Scholar 

  36. G. S. Kell, J. Chem. Eng. Data. 20, 97 (1975).

    Google Scholar 

  37. R. T. Emmet and F. J. Millero, J. Chem. Eng. Data 20, 351 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, P., McCluan, J. Apparent Molar Volumes and Adiabatic Compressibilities of Crown Ethers and Glymes in H2O and D2O at 25°C. Journal of Solution Chemistry 30, 119–131 (2001). https://doi.org/10.1023/A:1005248509674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005248509674

Navigation