Space Science Reviews

, Volume 92, Issue 1–2, pp 371–395 | Cite as

On the Isotopic Composition of Primordial Xenon in Terrestrial Planet Atmospheres

  • Robert O. Pepin


Xenon plays a crucial role in models of atmospheric evolution in which noble gases are fractionated from their initial compositions to isotopically heavier distributions by early hydrodynamic escape of primordial planetary atmospheres. With the assumption that nonradiogenic Xe isotope ratios in present-day atmospheres were generated in this way, backward modeling from these ratios through the fractionating process can in principle identify likely parental Xe compositions and thus the probable sources of noble gases in pre-escape atmospheres. Applied to Earth, this approach simultaneously establishes the presence of an atmospheric Xe component due principally to fission of extinct 244Pu and identifies a composition called U-Xe as primordial Xe. Pu-Xe comprises 4.65±0.30% of atmospheric 136Xe, and 6.8±0.5% of the present abundance of 129Xe derives from decay of extinct 129I. U-Xe is identical to the measured composition of solar-wind Xe except for deficits of the two heaviest isotopes – an unexpected difference since the modeling otherwise points to solar wind compositions for the lighter noble gases in the primordial terrestrial atmosphere. Evidence for the presence of U-Xe is not restricted to the early Earth; modeling based on a purely meteoritic data set defines a parental component in chondrites and achondrites with the same isotopic distribution. Results of experimental efforts to measure this composition directly in meteorites are promising but not yet conclusive. U-Xe also appears as a possible base component in interstellar silicon carbide, here with superimposed excesses of 134Xe and 136Xe six-fold larger than those in the solar wind. These compositional differences imply mixing of U-Xe with a nucleogenetic heavy-isotope component whose relative abundance in the solar accretion disk and in pre-solar environments varied both spatially and temporally.

In contrast to Earth, the U-Xe signature on Mars was apparently overwhelmed by local accretion of materials rich in either chondritic Xe or solar-wind Xe. Data currently in hand from SNC meteorites on the composition of the present atmosphere are insufficiently precise to constrain a modeling choice between these two candidates for primordial martian Xe. They likewise do not permit definitive resolution of a 244Pu component in the atmosphere although its presence is allowed within current measurement uncertainties.


Solar Wind Heavy Isotope Carbonaceous Chondrite Martian Atmosphere Atmospheric Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, T. J.: 1990, 'Earth Accretion', in H. E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford University Press, New York, pp. 211–227.Google Scholar
  2. Alexander, E.C., Jr., Lewis, R. S., Reynolds, J.H., and Michel, M. C.: 1971, 'Plutonium-244: Confirmation as an Extinct Radioactivity', Science 172, 837–840.ADSGoogle Scholar
  3. Ayres, T.R.: 1997, 'Evolution of the Solar Ionizing Flux', J. Geophys. Res. 102, 1641–1651.CrossRefADSGoogle Scholar
  4. Basford, J.R., Bradley, J.G., Dragon, J.C., Pepin, R.O., Coscio, M. R., and Murthy, V. R.: 1973, 'Krypton and Xenon in Lunar Fines', Lunar Sci. Conf. 4, 1915–1955.ADSGoogle Scholar
  5. Benz, W., and Cameron, A.G.W.: 1990, 'Terrestrial Effects of the Giant Impact', in H. E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford University Press, New York, pp. 61–67.Google Scholar
  6. Black, D.C., and Pepin, R.O.: 1969, 'Trapped Neon in Meteorites – II', Earth Planet. Sci. Lett. 6, 395–405.CrossRefADSGoogle Scholar
  7. Brown, H.: 1949, 'Rare Gases and the Formation of the Earth's Atmosphere', in G. P. Kuiper (ed.), The Atmospheres of the Earth and Planets, University Press, Chicago, pp. 258–266.Google Scholar
  8. Chambers, J. E., and Wetherill, G.W.: 1998, 'Making the Terrestrial Planets: N-body Simulations of Planetary Embryos in Three Dimensions', Icarus 136, 304–327.CrossRefADSGoogle Scholar
  9. Dreibus, G., and Wänke, H.:1987, 'Volatiles on Earth andMars:AComparison', Icarus 71, 225–240.CrossRefADSGoogle Scholar
  10. Eugster, O., Weigel, A., and Michel, Th.: 1994, 'Primordial Xe Isotopic Abundances and 244Pu– 136Xe Ages of Primitive DifferentiatedMeteorites', in J. Matsuda (ed.), Noble Gas Geochemistry and Cosmochemistry, Terra Scientific Publishing Co., Tokyo, pp. 1–9.Google Scholar
  11. Flynn, G. J.: 1997, 'The Contribution by Interplanetary Dust to Noble Gases in the Atmosphere of Mars', J. Geophys. Res. 102, 9175–9182.CrossRefADSGoogle Scholar
  12. Hartmann, L., Kenyon, S., and Hartigan, P.: 1993, 'Young Stars: Episodic Phenomena, Activity and Variability', in E.H. Levy and J. I. Lunine (eds.), Protostars and Planets III, University of Arizona Press, Tucson, pp. 497–518.Google Scholar
  13. Hunten, D.M., Pepin, R.O., and Walker, J.C.G.: 1987, 'Mass Fractionation in Hydrodynamic Escape', Icarus 69, 532–549.CrossRefADSGoogle Scholar
  14. Huss, G.R., and Lewis, R. S.: 1994, 'Noble Gases in Presolar Diamonds I: Three Distinct Components and Their Implications for Diamond Origins', Meteoritics 29, 791–810.ADSGoogle Scholar
  15. Igarashi, G.: 1995, 'Primitive Xenon in the Earth', in K. A. Farley (ed.), Volatiles in the Earth and Solar System, Conf. Proc. 341, AIP, New York, pp. 70–80.Google Scholar
  16. Krummenacher, D., Merrihue, C.M., Pepin, R. O., and Reynolds, J.H.: 1962, 'Meteoritic Krypton and Barium Versus the General Isotopic Anomalies inMeteoritic Xenon', Geochim. Cosmochim. Acta 26, 231–249.CrossRefADSGoogle Scholar
  17. Lewis, R. S., Amari, S., and Anders, E.: 1994, 'Interstellar Grains in Meteorites – II. SiC and its Noble Gases', Geochim. Cosmochim. Acta 58, 471–494.CrossRefADSGoogle Scholar
  18. Lodders, K., and Fegley, B., Jr.: 1997, 'An Oxygen Isotope Model for the Composition of Mars', Icarus 126, 373–394.CrossRefADSGoogle Scholar
  19. Marti, K., and Mathew, K. J.: 1998, 'Noble Gas Components in Planetary Atmospheres and Interiors in Relation to Solar Wind and Meteorites', Proc. Indian Acad. Sci. (Earth Planet. Sci.) 107, 425–431.Google Scholar
  20. Marti, K., Kim, J. S., Thakur, A.N., McCoy, T. J., and Keil, K.: 1995, 'Signatures of the Martian Atmosphere in Glass of the Zagami Meteorite', Science 267, 1981–1984.ADSGoogle Scholar
  21. Mathew, K. J., Kim, J. S., and Marti, K.: 1998, 'Martian Atmospheric and Indigenous Components of Xenon and Nitrogen in the Shergotty, Nakhla, and Chassigny Group Meteorites', Meteoritics and Planet. Sci. 33, 655–664.ADSCrossRefGoogle Scholar
  22. Mazor, E., Heymann, D., and Anders, E.: 1970, 'Noble Gases in Carbonaceous Chondrites', Geochim. Cosmochim. Acta 34, 781–824.CrossRefADSGoogle Scholar
  23. Meshik, A. P., Pravdivtseva, O.V., and Hohenberg, C.M.: 1998, 'Selective Laser Extraction of Gases From Mineral Populations With Different Optical Properties', Meteoritics and Planet. Sci. (Suppl.), 33, A106.ADSGoogle Scholar
  24. Meshik, A. P., Pravdivtseva, O.V., and Hohenberg, C.M.: 1999, 'Separation of Xe-H and Xe-L by Selective Laser Absorption in Murchison Diamonds', Lunar Planet. Sci. XXX, Abstract #1621.Google Scholar
  25. Michel, Th., and Eugster, O.: 1994, 'Primitive Xenon in Diogenites and Plutonium-244-Fission Xenon Ages of a Diogenite, a Howardite, and Eucrites', Meteoritics 29, 593–606.ADSGoogle Scholar
  26. Mizuno, H., and Wetherill, G.W.: 1984, 'Grain Abundance in the Primordial Atmosphere of the Earth', Icarus 59, 74–86.CrossRefADSGoogle Scholar
  27. Mizuno, H., Nakazawa, K., and Hayashi, C.: 1980, 'Dissolution of the Primordial Rare Gases Into the Molten Earth's Material', Earth Planet. Sci. Lett. 50, 202–210.CrossRefADSGoogle Scholar
  28. Niemeyer, S., and Zaikowski, A.: 1980, 'I–Xe Age and Trapped Xe Components of the Murray (C-2) Chondrite', Earth Planet. Sci. Lett. 48, 335–347.CrossRefADSGoogle Scholar
  29. Ozima, M., and Zahnle, K.: 1993, 'Mantle Degassing and Atmospheric Evolution: Noble Gas View', Geochem. J. 27, 185.-200.Google Scholar
  30. Pepin, R.O.: 1991, 'On the Origin and Early Evolution of Terrestrial Planet Atmospheres and Meteoritic Volatiles', Icarus 92, 2–79.CrossRefADSGoogle Scholar
  31. Pepin, R.O.: 1992, 'Origin of Noble Gases in the Terrestrial Planets', Annu. Rev. Earth Planet. Sci. 20, 389–430.CrossRefADSGoogle Scholar
  32. Pepin, R.O.: 1994a, 'The Hunt for U–Xe', Meteoritics 29, 568–569.ADSGoogle Scholar
  33. Pepin, R.O.: 1994b, 'Evolution of the Martian Atmosphere', Icarus 111, 289–304.CrossRefADSGoogle Scholar
  34. Pepin, R.O.: 1997, 'Evolution of Earth's Noble Gases: Consequences of Assuming Hydrodynamic Loss Driven by Giant Impact', Icarus 126, 148–156.CrossRefADSGoogle Scholar
  35. Pepin, R.O., and Carr, M.H.: 1992, 'Major Issues and Outstanding Questions', in H. H. Kieffer, B. M. Jakosky, C.W. Snyder, and M. S. Matthews (eds.), Mars, University of Arizona Press, Tucson, pp. 120–143.Google Scholar
  36. Pepin, R.O., Becker, R.H., and Rider, P. E.: 1995, 'Xenon and Krypton Isotopes in Extraterrestrial Regolith Soils and in the Solar Wind', Geochim. Cosmochim. Acta 59, 4997–5022.CrossRefADSGoogle Scholar
  37. Pepin, R. O., Becker, R.H., and Schlutter, D. J.: 1999, 'Irradiation Records in Regolith Materials, I: Isotopic Compositions of Solar-Wind Neon and Argon in Single Lunar Mineral Grains', Geochim. Cosmochim. Acta 63, 2145–2162.CrossRefADSGoogle Scholar
  38. Porcelli, D., and Wasserburg, G. J.: 1995, 'Mass Transfer of Xenon Through a Steady-State Upper Mantle', Geochim. Cosmochim. Acta 59, 1991–2007.CrossRefADSGoogle Scholar
  39. Porcelli, D., and Pepin, R. O.: 1999, 'Rare Gas Constraints on Early Earth History', in R. Canup and K. Righter (eds.), Origin of the Earth and Moon, University of Arizona Press, Tucson (in press).Google Scholar
  40. Porcelli, D., Cassen, P., Woolum, D., and Wasserburg, G. J.: 1998, 'Acquisition and Early Losses of Rare Gases From the Deep Earth', abstract in Origin of the Earth and Moon, Lunar and Planetary Institute Contr. No. 957, Houston, pp. 35–36.Google Scholar
  41. Ponganis, K.V., Graf, T., and Marti, K.: 1997, 'Isotopic Fractionation in Low-Energy Ion Implantation', J. Geophys. Res. 102, 19335–dy19343.CrossRefADSGoogle Scholar
  42. Suess, H. E.: 1949, 'Die Häufigkeit der Edelgase auf der Erde und im Kosmos', J. Geology 57, 600–607.CrossRefADSGoogle Scholar
  43. Swindle, T. D., and Jones, J. H.: 1997, 'The Xenon Isotopic Composition of the Primordial Martian Atmosphere: Contributions From Solar and Fission Components', J. Geophys. Res. 102, 1671–1678.CrossRefADSGoogle Scholar
  44. Swindle, T.D., Caffee, M.W., and Hohenberg, C.M.: 1986, 'Xenon and Other Noble Gases in Shergottites', Geochim. Cosmochim. Acta 50, 1001–1015.CrossRefADSGoogle Scholar
  45. Takaoka, N.: 1972, 'An Interpretation of General Anomalies of Xenon and the Isotopic Composition of Primitive Xenon', Mass Spectr. 20, 287–302.Google Scholar
  46. Walter, F. M., Brown, A., Mathieu, R.D., Myers, P.C., and Vrba, F. J.: 1988, 'X-ray Sources in Regions of Star Formation. III. Naked T Tauri Stars Associated With the Taurus-Auriga Complex', Astron. J. 96, 297–325.CrossRefADSGoogle Scholar
  47. Wasson, J. T.: 1974, Meteorites, Springer-Verlag, New York.Google Scholar
  48. Wetherill, G.W.: 1953, 'Spontaneous Fission Yields From Uranium and Thorium', Phys. Rev. 92, 907–912.CrossRefADSGoogle Scholar
  49. Wetherill, G.W.: 1990, 'Formation of the Earth', Annu. Rev. Earth Planet. Sci. 18, 205–256.CrossRefADSGoogle Scholar
  50. Wetherill, G.W.: 1992, 'An Alternative Model for the Formation of the Asteroids', Icarus 100, 307–325.CrossRefADSGoogle Scholar
  51. Wetherill, G.W., and Stewart, R.: 1993, 'Formation of Planetary Embryos: Effects of Fragmentation, Low Relative Velocity, and Independent Variation of Eccentricity and Inclination', Icarus 106, 190–209.CrossRefADSGoogle Scholar
  52. Wieler, R.: 1994, '"Q-gases" as "Local" Primordial Noble Gas Component in Primitive Meteorites', in J. Matsuda (ed.), Noble Gas Geochemistry and Cosmochemistry, Terra Scientific Publishing Co., Tokyo, pp. 31–41.Google Scholar
  53. Wieler, R., and Baur, H.: 1994, 'Krypton and Xenon From the Solar Wind and Solar Energetic Particles in two Lunar Ilmenites of Different Antiquity', Meteoritics 29, 570–580.ADSGoogle Scholar
  54. Wood, J.A., and Morfill, G. E.: 1988, 'A Review of Solar Nebula Models', in J. Kerridge and M. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, Tucson, pp. 329–347.Google Scholar
  55. Zahnle, K. J., and Walker, J.C.G.: 1982, 'The Evolution of Solar Ultraviolet Luminosity', Rev. Geophys. Space Phys. 20, 280–292.ADSGoogle Scholar
  56. Zahnle, K. J., and Kasting, J. F.: 1986, 'Mass Fractionation During Transonic Escape and Implications for Loss of Water from Mars and Venus', Icarus 68, 462–480.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Robert O. Pepin
    • 1
  1. 1.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations