Skip to main content
Log in

Basic Principles of Solar Acoustic Holography – (Invited Review)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We summarize the basic principles of holographic seismic imaging of the solar interior, drawing on familiar principles in optics and parallels with standard optical holography. Computational seismic holography is accomplished by the phase-coherent wave-mechanical reconstruction of the p-mode acoustic field into the solar interior based on helioseismic observations at the solar surface. It treats the acoustic field at the solar surface in a way broadly analogous to how the eye treats electromagnetic radiation at the surface of the cornea, wave-mechanically refocusing radiation from submerged sources to render stigmatic images that can be sampled over focal surfaces at any desired depth. Holographic diagnostics offer a straight-forward assessment of the informational content of the observed p-mode spectrum independent of prospective physical models of the local interior anomalies that it represents. Computational holography was proposed as the optimum approach whereby to address the severe diffraction effects that confront standard tomography in the solar p-mode environment. It has given us a number of remarkable discoveries in the last two years and now promises a new insight into solar interior structure and dynamics in the local perspective. We compare the diagnostic roles of simple acoustic-power holography and phase-sensitive holography, and anticipate approaches to solar interior modeling based on holographic signatures. We identify simple computational principles that, applied to high-quality helioseismic observations, make it easy for prospective analysts to produce high-quality holographic images for practical applications in local helioseismology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Born, M. and Wolf, E.: 1975a, Principles of Optics, Pergamon Press, Oxford, p. 375.

    Google Scholar 

  • Born, M. and Wolf, E.: 1975b, Principles of Optics, Pergamon Press, Oxford, p. 424.

    Google Scholar 

  • Born, M. and Wolf, E.: 1975c, Principles of Optics, Pergamon Press, Oxford, p. 425.

    Google Scholar 

  • Born, M. and Wolf, E.: 1975d, Principles of Optics, Pergamon Press, Oxford, p. 300.

    Google Scholar 

  • Born, M. and Wolf, E.: 1975e, Principles of Optics, Pergamon Press, Oxford, p. 113.

    Google Scholar 

  • Braun, D. C. and Lindsey, C.: 1999, Astrophys. J. 513, L79.

    Google Scholar 

  • Braun, D. C. and Lindsey, C.: 2000a, Solar Phys. 192, 285 (this issue).

    Google Scholar 

  • Braun, D. C. and Lindsey, C.: 2000b, Solar Phys. 192, 307 (this issue).

    Google Scholar 

  • Braun, D. C., Duvall, T. L. Jr., and LaBonte, B. J.: 1988, Astrophys. J. 335, 1015.

    Google Scholar 

  • Braun, D. C., Lindsey, C., Fan, Y., and Jefferies, S. M.: 1992, Astrophys. J. 392, 739.

    Google Scholar 

  • Braun, D. C., Lindsey, C., Fan, Y., and Fagan, M.: 1998, Astrophys. J. 502, 968.

    Google Scholar 

  • Cally, P. and Barnes, G.: 2000, private communication.

  • Chang, H.-K., Chou, D.-Y., LaBonte, B., and the TON Team: 1997, Nature, 389, 825.

    Google Scholar 

  • Chen, H.-R., Chou, D.-Y., Chang, H.-S., Sun, M. T., Yeh, S.-J., LaBonte, B., and the TON Team: 1998, Astrophys. J. 501, L139.

    Google Scholar 

  • Chou, D.-Y., Chang, H.-S., Sun, M. T., LaBonte, B., Chen, H.-R., Yeh, S.-J., and the TON Team: 1999, Astrophys. J. 514, 979.

    Google Scholar 

  • Christensen-Dalsgaard, J., Proffitt, C. R., and Thompson, M. J.: 1993, Astrophys. J. 403, L75.

    Google Scholar 

  • Donea, A.-C., Braun, D. C., and Lindsey, C.: 1999, Astrophys. J. 513, L143.

    Google Scholar 

  • Donea, A.-C., Lindsey, C., and Braun, D. C.: 2000, Solar Phys. 192, 321 (this issue).

    Google Scholar 

  • Duvall, T. L. Jr., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A.: 1993, Nature 362, 430.

    Google Scholar 

  • Jiménez-Reyes, S. J., Régulo, C., Pallé, P. L., and Roca Cortés, T.: 1998, Astron. Astrophys. 329, 1119.

    Google Scholar 

  • Lindsey, C. and Braun, D. C.: 1990, Solar Phys. 126, 101.

    Google Scholar 

  • Lindsey, C. and Braun, D. C.: 1997, Astrophys. J. 485, 895.

    Google Scholar 

  • Lindsey, C. and Braun, D. C.: 1998a, Astrophys. J. 499, L99.

    Google Scholar 

  • Lindsey, C. and Braun, D. C.: 1998b, Astrophys. J. 509, L129.

    Google Scholar 

  • Lindsey, C. and Braun, D. C.: 1999, Astrophys. J. 510, 494.

    Google Scholar 

  • Lindsey, C., Braun, D. C., Jefferies, S. M., Woodard, M. F., Fan, Y., Gu, Y., and Redfield, S.: 1996, Astrophys. J. 470, 636.

    Google Scholar 

  • Messiah, A.: 1961, Quantum Mechanics, Wiley, New York, p. 231.

    Google Scholar 

  • Roddier, F.: 1975, Compt. Rend. Acad. Sci. 281, B993

    Google Scholar 

  • Schlottmann, R. B.: 1999, Geophys. J. Int. 137, 353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsey, C., Braun, D. Basic Principles of Solar Acoustic Holography – (Invited Review). Solar Physics 192, 261–284 (2000). https://doi.org/10.1023/A:1005227200911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005227200911

Keywords

Navigation