Skip to main content
Log in

An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The oxygen isotope systematics in planetary and nebular matter are used to constrain the types of nebular material accreted to form a planet. The basic assumption of this model is that the mean oxygen isotopic composition of a planet is determined by the weighted mean oxygen isotopic composition of nebular matter accreted by the planet. Chondrites are taken as representatives of nebular matter. The chemical composition (which determines core size, mantle oxidation state, density, moment of inertia) of a planet results from the weighted mean compositions of the accreted nebular material, once the mass fractions of the different types of accreting matter are known. Here some results for Earth, Moon, Mars, and Vesta are discussed. The model implies that loss of volatile elements, such as alkalis and halogens, occurs during accretion and early planetary differentiation (e. g., by catastrophic impacts). The possible depletion mechanisms of moderately volatile elements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. L.: 1972, 'Internal Constitution of Mars', J. Geophys. Res. 77, 789–795.

    Article  ADS  Google Scholar 

  • Boesenberg, J. S., and Delaney, J. S.: 1997, 'A Model Composition of the Basaltic Achondrite Planetoid', Geochim. Cosmochim. Acta 61, 3205–3225.

    Article  ADS  Google Scholar 

  • Clayton, R.N.: 1993, 'Oxygen Isotopes in Meteorites', Ann. Rev. Earth Planet. Sci. 21, 115–149.

    Article  MathSciNet  ADS  Google Scholar 

  • Clayton, R. N., and Mayeda, T.K.: 1983, 'Oxygen Isotopes in Eucrites, Shergottites, Nakhlites, and Chassignites', Earth Planet. Sci. Lett. 62, 1–6.

    Article  ADS  Google Scholar 

  • Clayton, R.N., and Mayeda, T.K.: 1984, 'The Oxygen Isotope Record in Murchison and Other Carbonaceous Chondrites', Earth Planet. Sci. Lett. 67, 151–161.

    Article  ADS  Google Scholar 

  • Clayton, R.N., and Mayeda, T.K.: 1996, 'Oxygen Isotope Studies of Achondrites', Geochim. Cosmochim. Acta 60, 1999–2017.

    Article  ADS  Google Scholar 

  • Clayton, R.N., Mayeda, T.K, Goswami, J.N, and Olsen, E. J.: 1991, 'Oxygen Isotope Studies of Ordinary Chondrites', Geochim. Cosmochim. Acta 55, 2317–2337.

    Article  ADS  Google Scholar 

  • Consolmagno, G. J., and Drake, M. J.: 1977, 'Composition and Evolution of the Eucrite Parent Body-Evidence From Rare Earth Elements', Geochimica et Cosmochimica Acta 41, 1271–1282.

    Article  ADS  Google Scholar 

  • Delaney, J. S.: 1994, 'A Model Composition for Mars Derived From the Oxygen Isotopic Ratios of Martian/SNC Meteorites', Meteoritics 29, 459 (abstract).

    ADS  Google Scholar 

  • Dreibus, G., and Wänke, H.: 1980, 'The Bulk Composition of the Eucrite Parent Asteroid and its Bearing on Planetary Evolution', Z. Naturf. 34a, 204–216.

    ADS  Google Scholar 

  • Dreibus, G., Brückner, J., and Wänke, H.: 1997, 'On the Core Mass of Asteroid Vesta', Meteoritics Planet. Sci. 32, A36.

    ADS  Google Scholar 

  • Esat, T.M.: 1996, 'Comment on "Potassium Isotope Cosmochemistry: Genetic Implications of Volatile Element Depletion" by Munir Humayun and R.N. Clayton', Geochim. Cosmochim. Acta 60, 3755–3758.

    Article  ADS  Google Scholar 

  • Folkner, W. M., Yoder, C. F., Yuan, D.N., Standish, E.M., and Preston, R.A.: 1997, 'Interior Structure and Seasonal Mass Redistribution of Mars From Radio Tracking of Mars Pathfinder', Science 278, 1749–1752.

    Article  ADS  Google Scholar 

  • Humayun, M., and Clayton, R.N.: 1995, 'Potassium Isotope Cosmochemistry: Genetic Implications of Volatile Element Depletion', Geochim. Cosmochim. Acta 59, 2131–2148.

    Article  ADS  Google Scholar 

  • Jones, J. H.: 1984, 'The Composition of the Mantle of the Eucrite Parent Body and the Origin of Eucrites', Geochim. Cosmochim. Acta 48, 641–648.

    Article  ADS  Google Scholar 

  • Kitts, K., and Lodders, K.: 1998, 'Survey and Evaluation of Eucrite Bulk Compositions', Meteoritics and Planetary Sci. 33 Suppl., 197–213.

    Google Scholar 

  • Lodders, K.: 1991, 'Spurenelementverteilung zwischen Sulfid and Silikatschmelze und kosmochemische Anwendungen,' Ph.D. Thesis, Univ. Mainz, Germany, 176 pp.

    Google Scholar 

  • Lodders, K.: 1998, 'A Survey of SNC Meteorite Whole-Rock Compositions', Meteoritics and Planetary Sci. 33 Suppl., 183–190.

    ADS  Google Scholar 

  • Lodders, K., and Fegley, B.: 1997, 'An Oxygen Isotope Model for the Composition of Mars', Icarus 126, 373–394.

    Article  ADS  Google Scholar 

  • Lodders, K., and Fegley, B.: 1998, 'The Planetary Scientist's Companion', Oxford Univ. Press.

  • Morgan, J.W., Higuchi, H., Takahashi, H., and Hertogen, J.: 1978, 'A "Chondritic" Eucrite Parent Body: Inference From Trace Elements', Geochim. Cosmochim. Acta 42, 27–38.

    Article  ADS  Google Scholar 

  • Righter, K., and Drake, M. J.: 1997, 'A Magma Ocean on Vesta: Core Formation and Petrogenesis of Eucrites and Diogenites', Meteoritics and Planetary Sci. 32, 929–944.

    ADS  Google Scholar 

  • Ringwood, A. E.: 1979, 'Origin of the Earth and Moon', Springer Verlag, New York.

    Google Scholar 

  • Shearer, C.K., Fowler, G.W., and Papike, J. J.: 1997, 'Petrogenic Models for Magmatism on the Eucrite Parent Body: Evidence From Orthopyroxene in Diogenites', Meteoritics Planet. Sci. 32, 877–889.

    ADS  Google Scholar 

  • Stolper, E.: 1977, 'Experimental Petrology of Eucritic Meteorites', Geochim. Cosmochim. Acta 41, 587–611.

    Article  ADS  Google Scholar 

  • Takeda, H.: 1997, 'Mineralogical Records of Early Planetary Processes on Howardite, Eucrite, Diogenite Parent Body With Reference to Vesta', Meteoritics and Planet. Sci. 32, 841–853.

    Article  ADS  Google Scholar 

  • Thomas, P.C., Binzel, R. P., Gaffey, M. J., Zellner, B.H., Storrs, A.D., and Wells, E.: 1997, 'Vesta: Spin Pole, Size, and Shape From HST Images', Icarus 128, 88–94.

    Article  ADS  Google Scholar 

  • Wänke, H., and Dreibus, G.: 1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A325, 545–557.

    ADS  Google Scholar 

  • Young, E.D., Nagahara, H., Mysen, B.O., and Audet, D. M.: 1998, 'Non-Rayleigh Oxygen Isotope Fractionation by Mineral Evaporation: Theory and Experiments in the System SiO2', Geochim. Cosmochim. Acta 62, 3109–3116.

    Article  ADS  Google Scholar 

  • Zhang, Y.: 1998, 'The Young Age of Earth', Geochim. Cosmochim. Acta 62, 3185–3189.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodders, K. An Oxygen Isotope Mixing Model for the Accretion and Composition of Rocky Planets. Space Science Reviews 92, 341–354 (2000). https://doi.org/10.1023/A:1005220003004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005220003004

Keywords

Navigation