Skip to main content
Log in

Stability and equilibrium of emerged magnetic flux

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyse stability and equilibrium of a unipolar large-scale magnetic field pervading a plane horizontal subphotospheric layer with the possible implications for sunspots in mind. Eddy diffusivity is applied to account for the effects of the small-scale convective turbulence. Diffusivity quenching by magnetic field results in a secondary large-scale instability. A linear stability analysis is performed to define the marginal stability boundary in parametric space and the unstable mode structure. The nonlinear dynamics of the unstable modes are followed numerically. The original state of a uniform vertical magnetic field is transformed via the instability into the nonlinear dynamical equilibrium with a highly intermittant distribution of the magnetic field. Magnetic flux is concentrated in a relatively small area surrounded by an almost field-free region. The role of the fluid motion in the hydromagnetic equilibrium is emphasized. Although the relevance of the instability to the process of sunspot formation is rather questionable, the resulting equilibrium structures are similar to mature spots in their thermal and magnetic properties. Also, the simulated flow structure agrees with helioseismic tomography results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biermann, L.: 1941, Vierteljahrsschrift Astron. Ges. 76, 194.

    Google Scholar 

  • Bray, J. R. and Loughhead, R. E.: 1964, Sunspots, Chapman and Hall, London.

    Google Scholar 

  • Chandrasekhar, S.: 1960, Proc. Nat. Acad. Sci. 46, 253.

    Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford.

    Google Scholar 

  • Deinzer, W.: 1965, Astrophys. J. 141, 548.

    Google Scholar 

  • Deinzer, W., Hensler, G., Schüssler, M., and Weisshaar, E.: 1984, Astron. Astrophys. 139, 435.

    Google Scholar 

  • Duvall, T. L. Jr., D'Silva, S., Jefferies, S. M., Harvey, J. W., and Shou, J.: 1996, Nature 379, 235.

    Google Scholar 

  • Gilman, P. A. and Glatzmaier, G. A.: 1981, Astrophys. J. Suppl. 45, 335.

    Google Scholar 

  • Jahn, K. and Schmidt, H. U.: 1994, Astron. Astrophys. 290, 295.

    Google Scholar 

  • Kitchatinov, L. L., Pipin, V. V., and Rüdiger, G.: 1994, Astron. Nachr. 315, 157.

    Google Scholar 

  • Kosovichev, A. G.: 1996, Astrophys. J. 461, L55.

    Google Scholar 

  • Krause, F. and Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademieverlag, Berlin.

    Google Scholar 

  • Lites, B. W., Skumanich, A., and Martinez Pillet, V.: 1998, Astron. Astrophys. 333, 1053.

    Google Scholar 

  • Meyer, F., Schmidt, H. U., Wilson, P. R., and Weiss, N. O.: 1974, Monthly Notices Royal Astron. Soc. 169, 35.

    Google Scholar 

  • Parker, E. N.: 1975, Solar Phys. 40, 275.

    Google Scholar 

  • Parker, E. N.: 1979, Astrophys. J. 230, 905.

    Google Scholar 

  • Parker, E. N.: 1996, Nature 379, 209.

    Google Scholar 

  • Petrovay, K. and Moreno-Insertis, F.: 1997, Astrophys. J. 485, 398.

    Google Scholar 

  • Petrovay, K. and van Driel-Gesztelyi, L.: 1997, Solar Phys. 176, 249.

    Google Scholar 

  • Schmidt, H. U.: 1991, Geophys. Astrophys. Fluid Dyn. 62, 249.

    Google Scholar 

  • Spruit, H. and Zweibel, E. G.: 1979, Solar Phys. 62, 15.

    Google Scholar 

  • Stix, M. and Skaley, D.: 1990, Astron. Astrophys. 232, 234.

    Google Scholar 

  • Syrovatsky, S. I. and Zhugzhda, Y. D.: 1967, Astron. Zh. 44, 1180 (Soviet Astron. 11, 945).

    Google Scholar 

  • Thomas, J. H. and Weiss, N. O.: 1992, in J. H. Thomas and N. O. Weiss (eds.), Sunspots: Theory and Observations. Kluwer Academic Publishers, Dordrecht, p. 3.

    Google Scholar 

  • Tuominen, I., Brandenburg, A., Moss, D., and Rieutord, M.: 1994, Astron. Astrophys. 284, 259.

    Google Scholar 

  • Velikhov, E. P.: 1959, Soviet Phys. JETP 9, 995.

    Google Scholar 

  • Weiss, N. O.: 1977, in E. A. Spiegel and J.-P. Zahn (eds.), Problems of Stellar Convection. Springer-Verlag, Berlin, p. 176.

    Google Scholar 

  • Weiss, N. O., Brownjohn, D. P., Hurlburt, N. E., and Proctor, M. R. E.: 1990, Monthly Notices Royal Astron. Soc. 245, 434.

    Google Scholar 

  • Weiss, N. O., Brownjohn, D. P., Matthews, P. C., and Proctor, M. R. E.: 1996, Monthly Notices Royal Astron. Soc. 283, 1153.

    Google Scholar 

  • Zhugzhda, Y. D.: 1970, Astron. Zh. 47, 340 (Soviet Astron. 14, 274).

    Google Scholar 

  • Zwaan, C.: 1978, Solar Phys. 60, 213.

    Google Scholar 

  • Zwaan, C.: 1992, in J. H. Thomas and N. O. Weiss (eds.), Sunspots: Theory and Observations, Kluwer Academic Publishers, Dordrecht, p. 75.

    Google Scholar 

  • Zwaan, C. and Harvey, K. L.: 1994, in M. Schüssler and W. Schmidt (eds.), Solar Magnetic Fields. Cambridge University Press, Cambridge, p. 27. ??

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchatinov, L., Mazur, M. Stability and equilibrium of emerged magnetic flux. Solar Physics 191, 325–340 (2000). https://doi.org/10.1023/A:1005213708194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005213708194

Keywords

Navigation