Skip to main content
Log in

Aqueous Uranyl Complexes 1. Raman Spectroscopic Study of the Hydrolysis of Uranyl(VI) in Solutions of Trifluoromethanesulfonic Acid and/or Tetramethylammonium Hydroxide at 25°C and 0.1 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectra have been used to identify and characterize aqueous hydroxouranyl(VI) complexes from 0.0038 to 0.647M at pH from 0.24 to 14.96 adjusted witheither HCF3SO3 and/or (CH3)4NOH under ambient conditions. In acidic media(0.24 ≤ pH ≤ 5.63), the existence of four species UO2+ 2,(UO2)2(OH)3+,(UO2)2(OH)2+ 2, and (UO2)3(OH)+ 5 was confirmed. At high uranium concentrations(ΣU ≥ 0.1M) and in strongly acidic solutions (pH ≤ 1.94), one additional weakband was observed at 883±1 cm−1. This band was assumed torepresent thespecies UO2+ 2 with a reduced hydration number.In neutral and basic solutions(5.63 ≤ pH ≤ 14.96), five complexes were postulated: (UO2)3(OH) 7,(UO2)3(OH)2− 8,(UO2)3(OH)4− 10,(UO2)3(OH)5− 11, andUO2(OH)2− 4, based on theassigned symmetrical stretching frequencies of the UO2 group in each complex.(UO2)3(OH) 7 is the dominant species over mostof the pH range (4.53–12.78).The stability ranges of the other trinuclear species are:(UO2)3(OH)2− 8 (10.97 ≤pH ≤ 13.83), (UO2)3(OH)4− 10 (10.97 ≤ pH ≤ 13.85) and (UO2)3(OH)5− 11(12.53 ≤pH ≤ 14.10), which were identified for the first time. Finally, the monomericuranate anion OU2(OH)2− 4 dominates in highly basic solution (12.48 ≤ pH ≤14.96). The linear correlation between the symmetrical vibrational frequency v 1of the linear O = U = O entity and the average number \(\overline n\) of hydroxide ligandscoordinated to each uranium atom in a given species has been reaffirmed andexpanded:\(v_1 ({\text{cm}}^{{\text{ - 1}}} ) = - 22X\overline n + 870\)The v 1 correlation was also used to predict the vibration frequencies of theundetected monomers UO2(OH)+, UO2(OH)o 2,UO2(OH) 3 at 848±2, 826±2, and804±2 cm±1, respectively. Characteristic band areas for eachuranyl hydrolyzedspecies were determined by Raman spectra decomposition and their hydrolysisquotients log Q, were calculated. Structures of the four triuranylspecies are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. H. Guitter, Bull. Soc. Chim. 6 14, 64 (1947).

    Google Scholar 

  2. J. Sutton, J. Chem. Soc. S57, S275 (1949).

    Google Scholar 

  3. J. Sutton, J. Inorg. Nucl. Chem. 1, 68 (1955).

    Google Scholar 

  4. J. A. Hearne and A. G. White, J. Chem. Soc., p. 2168 (1957).

  5. S. Hietanen and L. G. Sillén, Acta Chem. Scand. 13, 1828 (1959).

    Google Scholar 

  6. A. Peterson, Acta Chem. Scand. 15, 101 (1961).

    Google Scholar 

  7. R. M. Rush, J. S. Johnson, and K. A. Kraus, Inorg. Chem. 1, 378 (1962).

    Google Scholar 

  8. C. F. Baes, Jr. and N. J. Meyer, Inorg. Chem. 1, 780 (1962).

    Google Scholar 

  9. H. S. Dunsmore, S. Hietanen, and L. G. Sillén, Acta Chem. Scand. 17, 2644 (1963).

    Google Scholar 

  10. H. S. Dunsmore and L. G. Sillén, Acta Chem. Scand. 17, 2657 (1963).

    Google Scholar 

  11. S. Hietanen, B. R. L. Row, and L. G. Sillén, Acta Chem. Scand. 17, 2735 (1963).

    Google Scholar 

  12. Y. J. Israéli, Bull. Soc. Chim. Fr. 1, 193 (1965).

    Google Scholar 

  13. U. Schedin and M. Frydman, Acta Chem. Scand. 22, 115 (1966).

    Google Scholar 

  14. C. Tsymbal, Nucl. Sci. Abstr. 23(24), Abstr. 49767 (1969).

    Google Scholar 

  15. N. M. Nikolaeva, Izv. Sib. Otd. Akad. Nauk. SSSR. Ser. Khim. Nauk 3, 61 (1971).

    Google Scholar 

  16. C. Musikas, Radiochem. Radioanal. Lett. 11, 5, 307 (1972).

    Google Scholar 

  17. M. Mavrodin-Tarabic, Rev. Roum. Chim. 18, 78 (1973).

    Google Scholar 

  18. M. Mavrodin-Tarabic, Rev. Roum. Chim. 18, 609 (1973).

    Google Scholar 

  19. M. Mavrodin-Tarabic, Rev. Roum. Chim. 19, 1461 (1974).

    Google Scholar 

  20. L. H. J. Lajunen and S. Parhi, Finn. Chem. Lett., p. 143 (1979).

  21. R. N. Sylva and M. R. Davidson, J. Chem Soc. Dalton Trans. 3, 465 (1979).

    Google Scholar 

  22. G. Dongarra and D. Langmuir, Geochim. Cosmochim. Acta 44, 1747 (1980).

    Google Scholar 

  23. N. K. Pongi, G. Double, and J. Hurwic, Bull. Soc. Chim. Fr. 9-10, 347 (1980).

    Google Scholar 

  24. M. Bartusek and L. Sommer, Z. Phys. Chem. Leipzig 226, 306 (1964).

    Google Scholar 

  25. Yu. S. Korotkin, Radiokhimiya 15, 671 (1973).

    Google Scholar 

  26. M. S. Caceci and G. R. Choppin, Radiochim. Acta 33, 207 (1983).

    Google Scholar 

  27. K. H. Gayer and H. Leider, J. Amer. Chem. Soc. 77, 1448 (1955).

    Google Scholar 

  28. A. A. Nikitin, Z. I. Sergeyeva, I. L. Khodakovskiy, and G. B. Naumov, Geokhimiya 3, 297 (1972).

    Google Scholar 

  29. G. K. T. Conn and C. K. Wu, Trans. Faraday Soc. 34, 1483 (1938).

    Google Scholar 

  30. J. Sutton, Nature (London) 169, 235 (1956).

    Google Scholar 

  31. L. J. Basile, J. C. Sullivan, J. R. Ferraro, and P. Labonville, Appl. Spectrosc. 28, 142 (1974).

    Google Scholar 

  32. S. L. Gupta, R. C. Saxena, and A. N. Pandey, Ind. J. Pure Appl. Phys. 15, 654 (1977).

    Google Scholar 

  33. L. M. Toth and G. M. Begun, J. Phys. Chem. 85, 547 (1981).

    Google Scholar 

  34. M. Asano and J. A. Koningstein, Can. J. Chem. 60, 2207 (1982).

    Google Scholar 

  35. L. Maya and G. M. Begun, J. Inorg. Nucl. Chem. 43, 11, 2827 (1981).

    Google Scholar 

  36. D. A. Palmer and C. Nguyen-Trung, J. Solution Chem. 24, 1281 (1995).

    Google Scholar 

  37. D. A. Johnson and T. M. Florence, Anal. Chim. Acta 53, 73 (1971)

    Google Scholar 

  38. A. Burneau, M. Tazi, and G. Bouzat, Talanta 37, 743 (1992)

    Google Scholar 

  39. F. Quilès and A. Burneau, Vibrat. Spectrosc. 18, 61 (1998)

    Google Scholar 

  40. E. Rabinowitch and R. L. Belford, Spectroscopy and Photochemistry of Uranyl Compounds (MacMillan (Pergamon), Oxford, 1964).

    Google Scholar 

  41. C. Nguyen-Trung, G. M. Begun, and D. A. Palmer, Inorg. Chem. 31, 5280 (1992).

    Google Scholar 

  42. D. L. Clark, S. D. Conradson, R. J. Donohoe, D. W. Keogh, D. E. Morris, P. D. Palmer, R. D. Rogers, and C. D. Tait, Inorg. Chem. 38, 1456 (1999).

    Google Scholar 

  43. I. Grenthe, J. Fuger, M. J. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner Chemical Thermodynamics of Uranium, (Elsevier, Amsterdam, 1992).

    Google Scholar 

  44. C. F. Baes, Jr. and R. E. Mesmer The Hydrolysis of Cations [Wiley (Interscience), New York, 1976].

    Google Scholar 

  45. K. Ohwada, A. Takahashi, and G. Fujisawa, Appl. Spectrosc. 49, 216 (1995)

    Google Scholar 

  46. K. Ohwada, A. Takahashi, and G. Fujisawa, Spectrochim. Acta A52, 149 (1996)

    Google Scholar 

  47. C. Madic, D. E. Hobart, and G. M. Begun, Inorg. Chem. 22, 1494 (1983).

    Google Scholar 

  48. M. Åberg, Inorg. Chem. 22, 3986 (1983).

    Google Scholar 

  49. A. Navaza, F. Villain, and P. Charpin, Polyhedron 3, 143 (1984)

    Google Scholar 

  50. M. Åberg, Acta Chem. Scand. A32, 2,101 (1978).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Trung, C., Palmer, D.A., Begun, G.M. et al. Aqueous Uranyl Complexes 1. Raman Spectroscopic Study of the Hydrolysis of Uranyl(VI) in Solutions of Trifluoromethanesulfonic Acid and/or Tetramethylammonium Hydroxide at 25°C and 0.1 MPa. Journal of Solution Chemistry 29, 101–129 (2000). https://doi.org/10.1023/A:1005197030188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005197030188

Navigation