Skip to main content
Log in

Solubility of Lithium Monoborate in High-Temperature Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility in water of anhydrous lithium monoborate has been determinedat 300 to 360°C. Equilibrium constants for the isocoulombic solubilityreactionLiBO2 (s) + H+ (aq) + H2O (1) = Li+ (aq) + H3BO3 (aq)have been calculated from measured concentrations of total B and total Li insolution. These high-temperature constants can be fitted by a three-term equationthat is consistent with thermodynamic data at 25°C. The heat capacity changefor the isocoulombic reaction is small and independent of temperature. Solubilityresults agree with unpublished measurements from early work on developmentof nuclear power. Solubilities reported by Bouaziz appear to be much too highand may apply to a hydrated phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Cohen, Water Coolant Technology of Power Reactors (American Nuclear Society, LaGrange Park, IL, 1980), pp. 223–224.

    Google Scholar 

  2. Z. M. Shapiro, ed., A Study of Chemical Control for PWR, Westinghouse Atomic Power Division (Bettis) Report WAPD–C(PC)–31, April 8, 1955, pp. 35A–39A. Available from the Office of Technical Services, Department of Commerce,Washington 25, DC. (Declassified May 8, 1957.)

  3. R. Bouaziz, Ann. Chim. 6, 345 (1961).

    Google Scholar 

  4. G. Tamman, Z. Anorg. Chem. 37, 303 (1903). See also A. Findlay, A. N. Campbell, and N. O. Smith, The Phase Rule and its Applications, 9th edn. (Dover Publications, New York, 1951), p. 472, for comments on sources of error in Tamman's method.

    Google Scholar 

  5. W. J. Reburn and W. A. Gale, J. Phys. Chem. 59, 19 (1955).

    Google Scholar 

  6. I. Lambert, Paper No. 6h in Proceedings: 1991 Symposium on Chemistry in High-Temperature Aqueous Solutions, Report EPRI-TR-102706 (Electric Power Research Institute, Palo Alto, CA, August 1993).

    Google Scholar 

  7. S. E. Ziemniak and E. P. Opalka, in Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, G. J. Theus and J. R. Weeks, eds. (The Metallurgical Society, Warrendale, PA, 1988), pp. 153–156.

    Google Scholar 

  8. S. E. Ziemniak and E. P. Opalka, in Proceedings of the Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, R. E. Gold and E. P. Simonen, eds. (The Minerals, Metals and Materials Society, Warrendale, PA, 1993), p. 929.

    Google Scholar 

  9. S. E. Ziemniak and E. P. Opalka, Chem. Mater. 5, 690 (1993).

    Google Scholar 

  10. S. E. Ziemniak and E. P. Opalka, Chem. Mater. 6, 461 (1994).

    Google Scholar 

  11. G. Economy, R. J. Jacko, F. W. Pement, and A. E. Klein, Apparatus for Conducting Accelerated Corrosion Testing of Nickel Alloys, U. S. Patent 5,034,190, July 23, 1991.

  12. P. R. Tremaine, S. Quinlan, J. Bridson, and J. Stodola, Solubility and Thermodynamics of Sodium Phosphate Reaction Products under Hideout Conditions, in Proceedings of the 57th International Water Conference (Engineers Society of Western Pennsylvania, Pittsburgh, PA, 1996), pp. 207–217.

    Google Scholar 

  13. W. T. Lindsay, Jr., in The ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed. (American Society of Mechanical Engineers, New York, 1989), pp. 402–410, 474–490.

    Google Scholar 

  14. J. H. Alexander, F. H. Howard, and L. Luu, MULTEQ: Equilibrium of an Electrolytic Solution with Vapor-Liquid Partitioning and Precipitation, Report EPRI NP-5561-CCML (Electric Power Research Institute, Palo Alto, CA, 1992).

    Google Scholar 

  15. W. T. Lindsay, Jr., in Control of Corrosion on the Secondary Side of Steam Generators, R. W. Staehle, J. A. Gorman, and A. R. McIlree, eds. (NACE International, Houston, TX, 1996), pp. 567–576.

    Google Scholar 

  16. W. T. Lindsay, Jr., in Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry, H. J. White, J. V. Sengers, B. B. Neumann, and J. C. Bellows, eds. (Begell House, New York, 1995), pp. 669–676.

    Google Scholar 

  17. R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton, Inorg. Chem. 11, 537 (1972).

    Google Scholar 

  18. C. F. Baes, Jr., private communication to P. J. Millett, EPRI, May, 1992.

  19. J. M. Wright, W. T. Lindsay, Jr., and T. R. Druga, The Behavior of Electrolytic Solutions at Elevated Temperatures as Derived from Conductance Measurements. AEC Research and Development Report WAPD-TM-204 (U. S. Government Printing Office, Washington, June, 1961).

    Google Scholar 

  20. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nutall, The NBS Tables of Chemical Thermodynamic Properties. Supplement No. 2, Vol. 11, J. Phys. Chem. Ref. Data (American Institute of Physics, New York, 1982).

    Google Scholar 

  21. M. W. Chase, C. A. Davies, J. R. Downey, Jr., D. J. Fruip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition. Supplement No. 1, Vol. 14, J. Physical and Chemical Reference Data (American Institute of Physics, New York, 1986).

  22. J. D. Cox, D. D. Wagman, and W. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publ. Co., New York, 1989).

    Google Scholar 

  23. L. Hnedkovsky´, V. Majer, and R. H. Wood, J. Chem. Thermodyn. 27, 801 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byers, W.A., Lindsay, W.T. & Kunig, R.H. Solubility of Lithium Monoborate in High-Temperature Water. Journal of Solution Chemistry 29, 541–559 (2000). https://doi.org/10.1023/A:1005194129783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005194129783

Navigation