Skip to main content
Log in

Amplitude Hierarchy of Vesicle Shapes

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Shapes of fluid lipid vesicles are governed by the bending elasticity of their membrane as described by the Area-Difference-Elasticity (ADE) model. These shapes can be quantified using a suitable modal representation of the vesicle contour. Prolate vesicles are characterized by a hierarchy in their shape amplitudes. Experimentally, we find an ordering of the amplitudes with mode number both in large (100 nm) as well as giant (10 μm) unilamellar vesicles. Mean shapes are found only within the small energetically stable region of the prolate phase. Our study demonstrates that bending energy concepts may be quantitatively used on cellular length scales ranging from the size of organelles to the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. 28c (1973), 693–703.

    Google Scholar 

  2. Evans, E.: Bending resistance and chemically induced moments in membrane bilayers, Biophys. J. 14 (1974), 923–931.

    Google Scholar 

  3. Lipowsky, R.: The conformation of membranes, Nature 349 (1991), 475–481.

    Google Scholar 

  4. Seifert, U.: Configurations of fluid membranes and vesicles, Adv. Phys. 46 (1997), 13–137.

    Google Scholar 

  5. Döbereiner, H.-G.: Fluctuating vesicle shapes, in P. Walde and P. Luisi (eds), Giant vesicles, Wiley, to appear.

  6. Döbereiner, H.-G. and Seifert, U.: Giant vesicles at the prolate-oblate transition: A macroscopic bistable system, Europhys. Lett. 36 (1996), 325–330.

    Google Scholar 

  7. Käs, J. and Sackmann, E.: Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes, Biophys. J. 60 (1991), 825–844.

    Google Scholar 

  8. Döbereiner, H.-G., Evans, E., Seifert, U. and Wortis, M.: Spinodal fluctuations of budding vesicles, Phys. Rev. Lett. 75 (1995), 3360–3363.

    Google Scholar 

  9. Farge, E. and Devaux, P.: Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids, Biophys. J. 92 (1992), 347–357.

    Google Scholar 

  10. Döbereiner, H.-G., Käs, J., Noppl, D., Sprenger, I. and Sackmann, E.: Budding and fission of vesicles, Biophys. J. 65 (1993), 1396–1403.

    Google Scholar 

  11. Wintz, W., Döbereiner, H.-G. and Seifert, U.: Starfish vesicles, Europhys. Lett. 33 (1996), 403–408.

    Google Scholar 

  12. Kraus, M., Seifert, U. and Lipowsky, R.: Gravity-induced shape transformations of vesicles, Europhys. Lett. 31 (1995), 431–436.

    Google Scholar 

  13. Sackmann, E.: Membrane bending energy concept of vesicle and cell-shapes and shape transitions, 7th Datta Lecture, FEBS Lett. 346 (1994), 3–16.

    Google Scholar 

  14. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D.: Molecular Biology of the Cell, 3rd edition, Garland, New York, 1994.

    Google Scholar 

  15. Mashl, R.J. and Bruinsma, R.: Spontaneous-curvature theory of clathrin-coated membranes, Biophys. J. 74 (1998), 2862–2875.

    Google Scholar 

  16. Svetina, S., Brumen, M. and Žekš, B.: Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis, Stud. Biophys. 110 (1985), 177–184.

    Google Scholar 

  17. Miao, L., Seifert, U., Wortis, M. and Döbereiner, H.-G.: Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E 49 (1994), 5389–5407.

    Google Scholar 

  18. Schneider, M.B., Jenkins, J.T. and Webb, W.W.: Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles, J. Phys. France 45 (1984), 1457–1472.

    Google Scholar 

  19. Duwe, H.P., Käs, J. and Sackmann, E.: Bending elastic moduli of lipid bilayers: Modulation by solutes, J. Phys. (Paris) 51 (1990), 945–961.

    Google Scholar 

  20. Méléard P., Faucon, J., Mitov, M. and Bothorel, P.: Pulsed-light microscopy applied to the measurement of the bending elasticity of giant liposomes, Europhys. Lett. 19 (1992), 267–271.

    Google Scholar 

  21. Berndl, K., Käs, J., Lipowsky, R., Sackmann, E. and Seifert, U.: Shape transformations of giant vesicles: Extreme sensitivity to bilayer asymmetry, Europhys. Lett. 13 (1990), 659–664.

    Google Scholar 

  22. Mui, B.L.-S., Döbereiner, H.-G., Madden, T.D. and Cullis, P.R.: Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles, Biophys. J. 69 (1995), 930–941.

    Google Scholar 

  23. Döbereiner, H.-G., Evans, E., Kraus, M., Seifert, U. and Wortis, M.: Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory, Phys. Rev. E 55 (1997), 4458–4474.

    Google Scholar 

  24. Döbereiner, H.-G., Selchow, O. and Lipowsky, L.: Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry, Eur. Biophys. J. 28 (1999), 174–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Döbereiner, HG. Amplitude Hierarchy of Vesicle Shapes. Journal of Biological Physics 25, 35–39 (1999). https://doi.org/10.1023/A:1005190615390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005190615390

Navigation