Skip to main content
Log in

Thermodynamic Analysis of Phase Equilibria in the System Cyclohexane—Methanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The phase diagram of cyclohexane-methanol was thermodynamically modeledin the range of 150 ≤ T/K ≤ 360 and at a pressure of 1 bar on the basis ofavailable experimental data. The Gibbs energy functions of four pure solid andtwo mixture phases were taken into consideration. The liquid phase was describedby a model based on mole fraction statistics and the simplified assumption ofmethanol tetramers mixed with cyclohexane monomers. The gas phase was treatedas a nonideal mixture with a Gibbs energy modeled on the basis of the virialcoefficient formalism considering only monomers. The Gibbs energies of the twosolid modifications of pure methanol, as well as pure cyclohexane, were fixedusing literature data. The pressure dependence of the Gibbs energies of the liquidand solid phases were neglected. The complete T-x phase diagram includinggas/liquid equilibria as well as p-x phase diagrams in the range of 20 and 55°C werecalculated. Experimental and calculated data were found to agree reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Bylicki, The Second CODATA Symposium on Critical Evaluation and Prediction of Phase Equilibria in Multicomponent Systems, Paris, I, 221 (1985).

    Google Scholar 

  2. D. Shaw, A. Skrzecz, J. M. Lorimer, and A. Maczynski, Solubility Data Series, Alcohols with Hydrocarbons, Vol. 56 (Oxford University Press, Oxford 1994).

    Google Scholar 

  3. I. Nagata and K. Tamura, Thermochim. Acta 57, 331 (1982).

    Google Scholar 

  4. R. H. Stokes, J. Chem. Soc. Faraday Trans. I 73, 1140 (1977).

    Google Scholar 

  5. F. Aguirre-Ode, J. Chem. Eng. Data 32, 434 (1987).

    Google Scholar 

  6. J. A. Gonzáles, I. G. de la Fuente, J. C. Cobos, and C. Casanova, J. Solution Chem. 23, 399 (1994).

    Google Scholar 

  7. P. Oracz, M. Góral, G. Wilczek-Vera, and S. Warycha, Fluid Phase Equilibria 112, 291 (1995).

    Google Scholar 

  8. P. Oracz, M. Góral, G. Wilczek-Vera, and S. Warycha, Fluid Phase Equilibria 126, 71 (1996).

    Google Scholar 

  9. M. Góral, Fluid Phase Equilibria 118, 27 (1996).

    Google Scholar 

  10. M. Góral, P. Orazc, and S. Warycha, Fluid Phase Equilibria 129, 223 (1997).

    Google Scholar 

  11. M. Góral, P. Orazc, and S. Warycha, Fluid Phase Equilibria 135, 51 (1997).

    Google Scholar 

  12. M. Góral, P. Orazc, and S. Warycha, Fluid Phase Equilibria 152, 109 (1998).

    Google Scholar 

  13. K. Kurihara, T. Iguchi, K. Ochi, and K. Kojima, Fluid Phase Equilibria 144, 169 (1998).

    Google Scholar 

  14. H. Marhold, P. Waldner, and H. Gamasjäger, Thermochim. Acta 321, 127 (1998).

    Google Scholar 

  15. N. Saunders and A. P. Miodownik, CALPHAD-Calculation of Phase Diagrams, A Comprehensive Guide, R. W. Chan Ser. ed. (1998).

  16. G. Eriksson and K. Hack, Metall. Trans. B 21, 1013 (1990).

    Google Scholar 

  17. E. Königsberger and G. Eriksson, CALPHAD 19, 207 (1995).

    Google Scholar 

  18. M. A. Wendt, J. Meiler, F. Weinhold, and T.-C. Farrar, Mol. Phys. 93, 145 (1998).

    Google Scholar 

  19. G. Hradetzky and H.-J. Bittrich, Intern. Data Ser., Sel. Data Mixtures Ser. A, p. 216 (1986).

  20. K. Roth, G. Schneider, and E. U. Frank, Ber. Bunsenges. Phy. Chem. 70, 5 (1966).

    Google Scholar 

  21. W. B. Dixon, J. Phys. Chem. 74, 1396 (1970).

    Google Scholar 

  22. M. Frenkel, N. M. Gadalla, K. N. Marsh, and R. C. Wilhoit, TRC Thermodynamic Tables, Hydrocarbons, Suppl. No. 11 (1996).

  23. H. V. Kehiaian, CRC Handbook of Chemistry and Physics, 76th edn. (Boca Raton, FL, 1995–1996).

  24. K. Strubl, V. Svoboda, R. Holub, and J. Pick, Collect. Czech. Chem. Commun. 35, 3004 (1970).

    Google Scholar 

  25. A. N. Campbell and S. C. Anand, Can. J. Chem. 50, 479 (1972).

    Google Scholar 

  26. S. C. Hwang and R. L. Robinson, J. Chem. Eng. Data 22, 319 (1977).

    Google Scholar 

  27. Y. Miyano and W. Hayduk, J. Chem. Eng. Data 38, 277 (1993).

    Google Scholar 

  28. J. Gmehling, J. Menke, K. Fischer, and J. Krafczyk, Azeotropic Data I, 140 (1994).

    Google Scholar 

  29. S. Madhavan and P. S. Murti, Chem. Eng. Sci. 21, 465 (1966).

    Google Scholar 

  30. V. Svoboda, J. Voň ková, R. Holub, and J. Pick, Collect. Czech. Chem. Commun. 42, 2607 (1977).

    Google Scholar 

  31. M. P. Mondain-Monval, C. R. Acad. Sci. 183, 1104 (1926).

    Google Scholar 

  32. A. N. Campbell and E. M. Kartzmark, Can. J. Chem. 47, 619 (1969).

    Google Scholar 

  33. M. Dai and J.-P. Chao, Fluid Phase Equilibria 23, 315 (1985).

    Google Scholar 

  34. V. P. Belousov, I. S. Zhigunov, and A. G. Morachevskii, Venstn. Leningrad. Univ. Ser. Fiz. Khim. 16, 111 (1961).

    Google Scholar 

  35. L. M. Kurtynia, N. A. Sminova, and P. F. Andrukovich, Khim. Termodin. Rastvorov 2, 43 (1968).

    Google Scholar 

  36. K. Touhara, M. Ikeda, K. Nakanishi, and N. Watanabe, J. Chem. Thermodyn. 7, 887 (1975).

    Google Scholar 

  37. M. B. Ewing, K. A. Johnson, and M. L. McGlashan, J. Chem. Thermodyn. 17, 513 (1985).

    Google Scholar 

  38. J. Gmehling and B. Krentscher, Intern. Electr. J. Phys.-Chem. Data 1, 181 (1995).

    Google Scholar 

  39. A. N. Marinichev and M. P. Susarev, Zh. Prikl. Khim. 38, 1619 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldner, P., Gamsjäger, H. Thermodynamic Analysis of Phase Equilibria in the System Cyclohexane—Methanol. Journal of Solution Chemistry 29, 505–520 (2000). https://doi.org/10.1023/A:1005183028875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005183028875

Navigation