Skip to main content
Log in

The Solubility of Sodium Sulfate and the Reduction of Aqueous Sulfate by Magnetite under Near-Critical Conditions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of Na2SO4 (s) (thenardite) and the interactions between magnetiteand aqueous Na2SO4 near the critical point of water have been determined in azirconium-alloy flow reactor at temperatures 350°C ≤ t ≤ 375°C and isobaricpressures 190 ≤ p ≤ 305 bar. The experimental solubility data are describedwell as a function of temperature and solvent density ρ1 byln x(Na2SO4, aq.) = −10.47 − 27550/T +(4805/T) ln ρ1.The interaction between magnetite and Na2SO4 (aq.) was examined from 250 to370°C at molalities near the saturation composition of Na2SO4 (s). While no solidreaction products were observed, HS (aq.) was observed to form above 350°Cby sulfate reduction, as a product of the reaction8 Fe3O4(s) + Na2SO4 (aq.) + H2O(l)= 12 Fe2O3 (s) + NaHS (aq.) + NaOH (aq.).The reduction reaction appears to be controlled by surface reaction kinetics, ata level well below the equilibrium molality of HS (aq.). Metallic iron reactedwith Na2SO4 (aq.) in a similar fashion at temperatures above 350°C, to yieldhigher molalities of HS (aq.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. MacLairin, J. Chem. Soc. 63, 729 (1893)

    Google Scholar 

  2. J. P. Wuite, Z. Phys. Chem. 86, 349 (1913-1914).

    Google Scholar 

  3. W. C. Schroeder, A. Gabriel, and E. P. Partridge, J. Amer. Chem. Soc. 57, 1539 (1935).

    Google Scholar 

  4. N. B. Keevil, J. Amer. Chem. Soc. 64, 841 (1942).

    Google Scholar 

  5. H. S. Booth and R. M. Bidwell, J. Amer. Chem. Soc. 72, 2567 (1950).

    Google Scholar 

  6. W. L. Marshall, H. W. Wright, and C. H. Secoy, J. Chem. Educat. 72, 2567 (1950).

    Google Scholar 

  7. I. Kh. Khaibullin and B. E. Novikov, Teplofiz. Vys. Temp. 11, 320 (1973).

    Google Scholar 

  8. M. Obsil, V. Majer, G. T. Hefter, and V. Hynek, J. Chem. Eng. Data 42, 137 (1997).

    Google Scholar 

  9. M. Obsil, V. Majer, J.-P. E. Grolier, and G. T. Hefter, J. Chem. Soc. Faraday Trans. 92, 4445 (1996).

    Google Scholar 

  10. R. S. Z. Rogers and K. S. Pitzer, J. Phys. Chem. 85, 2886 (1981).

    Google Scholar 

  11. R. T. Pabalan and K. S. Pitzer, (a) Geochim. Cosmochim. Acta 51, 2429 (1987); (b) Geochim. Cosmochim. Acta 52, 2393 (1988).

    Google Scholar 

  12. K. S. Pitzer and J. S. Murdzek, J. Solution Chem. 11, 409 (1982).

    Google Scholar 

  13. M. L. Ravich and F. E. Borovaya, Russ. J. Inorg. Chem. 9, 520 (1964).

    Google Scholar 

  14. F. G. Armellini, J. W. Tester, and G. T. Honig, J. Supercritical Fluids 7, 147 (1994).

    Google Scholar 

  15. F. G. Armellini and J. W. Tester, Fluid Phase Equil. 84, 123 (1993).

    Google Scholar 

  16. M. A. Styrikovich, I. Kh. Khibylin, and D. G. Tskhirashvili, Dokl. Akad. Nauk SSSR, 100, 1123 (1955).

    Google Scholar 

  17. M. A. Styrikovich and L.N. Khokhlov, Teploenergetika, 4, 3 (1957).

    Google Scholar 

  18. F. K. Cameron, J. Phys. Chem. 34, 692 (1930).

    Google Scholar 

  19. W. D. Halstead and B. F. Lovey, J. Appl. Chem. Biotechnol. 27, 585 (1977).

    Google Scholar 

  20. E. Posnjak and H. E. Mervin, J. Amer. Chem. Soc. 45, 1965 (1923).

    Google Scholar 

  21. E. A. M. Wetton, Power Ind. Res. 1, 329 (1981).

    Google Scholar 

  22. R. H. Busey, H. F. Holmes, and R. E. Mesmer, J. Chem. Thermodyn. 16, 343 (1984).

    Google Scholar 

  23. J. D. Cline, Limonol. Oceanogr. 14, 454 (1969).

    Google Scholar 

  24. J. Smiltens, J. Chem. Phys. 20, 990 (1952).

    Google Scholar 

  25. J. M. H. Levelt Sengers, in Supercritical Fluid Technology; J. J. Bruno and J. F. Ely, eds; (CRC Press: Boca Raton, FL, 1991), Chap. 1.

    Google Scholar 

  26. J. M. H. Levelt Sengers, J. Supercritical Fluids 4, 215 (1991).

    Google Scholar 

  27. (a) A. H. Harvey, J. Phys. Chem. 94, 932 (1990); (b) A. H. Harvey, J. M. H. Levelt, Sengers, and J. H. Tanger, IV, J. Phys. Chem. 95, 932 (1991).

  28. R. E. Mesmer, D. A. Palmer, and J. M. Simonson, in Activity Coefficients in Electrolyte Solutions, 2nd edn.; K. S. Pitzer, ed.; (CRC Press: Boca Raton, FL, 1991), Chap. 8.

    Google Scholar 

  29. A. H. Harvey, A. P. Peskin, and S. A. Klein, NIST Standard Reference Database 10, Version 2.11 (1997).

  30. J. W. Johnson, E. H. Oelkers, and H. Helgeson, Comp. Geosci. 18, 899 (1992).

    Google Scholar 

  31. W. T. Lindsay, Jr., in The ASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed. (Amer. Soc. Mech. Eng., New York, 1989), Chap. 7.

    Google Scholar 

  32. J. L. Oscarson, R. M. Izatt, P. R. Brown, Z. Pawlak, S. E. Gillepsie, and J. J. Christensen, J. Solution Chem. 17, 841 (1988).

    Google Scholar 

  33. G. S. Pokrovski, J Schott, and A. S. Sergeyev, Chem. Geol. 124, 253 (1995).

    Google Scholar 

  34. R. H. Wood, personal communication, March, 2000.

  35. W. L. Marshall and G. M. Begun, J. Chem. Soc. Faraday Trans. II 85, 1963 (1989).

    Google Scholar 

  36. C. Margulis, D. Laria, and R. Fernandez Prini, J. Chem. Soc. Faraday Trans. 92, 2703 (1996).

    Google Scholar 

  37. M. A. Blesa, P. J. Morando, and A. E. Reazzoni, Chemical Dissolution of Metal Oxides, (CRC Press, Boca Raton, Fl, 1992).

    Google Scholar 

  38. D. Postma, Geochim. Cosmochim. Acta 57, 5027 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvedov, D., Tremaine, P.R. The Solubility of Sodium Sulfate and the Reduction of Aqueous Sulfate by Magnetite under Near-Critical Conditions. Journal of Solution Chemistry 29, 889–904 (2000). https://doi.org/10.1023/A:1005182600421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005182600421

Navigation