Skip to main content
Log in

On Spectral Identification of DNA-Base Pairs Polymorphism

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The results of MNDO-PM3 theoretical study of H-bonds liability of watson-crick base pairs are discussed. Some microwave and IR spectral criteria are suggested for identification of hidden polymorphism of DNA base pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakushevich, L.V.: Nonlinear Physics of DNA, John Wiley & Sons, Chichester, New York, Brisbane, Singapure, Toronto, 1998.

    Google Scholar 

  2. Gaeta, G., Reiss, C., Peyrard, M. and Dauxois, T.: Simple models of nonlinear DNA dynamics, Rev. Nuovo Cimento 17 (1994), 1–48.

    Google Scholar 

  3. Yakushevich, L.V.: Nonlinear dynamics of biopolymers: theoretical models, experimental data, Quart. Rev. Biophys. 26 (1993), 201–223.

    Google Scholar 

  4. Saenger, W.: Principles of Nucleic Acid Structure, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  5. Wilson, C.C.: An analysis of conformational parameters in nucleic acid fragments, Nucleic Acid Res. 15 (1987), 8577–8591.

    Google Scholar 

  6. Wilson, C.C. and Tollin, P.: Propeller twisting in single crystals of nucleosides, Nuleosides & Nucleotides 6 (1987), 643–653.

    Google Scholar 

  7. Wilson, C.C.: The effect of exocyclic substituents on base-pair propeller twist, Nuleosides & Nucleotides 9 (1990), 479–488.

    Google Scholar 

  8. Wilson, C.C.: Analysis of conformational parameters in nucleic acid fragments. III. Very short chain oligonucleotides. The effect of base stacking, Nucleic Acid Res. 16 (1988), 4752–4759.

    Google Scholar 

  9. Wilson, C.C.: Analysis of conformational parameters in nucleic acid fragments. II. Co-crystal complexes of nucleic acid bases, Nucleic Acid Res. 16 (1988), 385–393.

    Google Scholar 

  10. Dickerson, R.E.: Base sequence and helix structure variation in B and A DNA, J. Mol. Biol. 166 (1983), 419–441.

    Google Scholar 

  11. Alexandresen, A., Drendel, W.B., Sundaralingam, M.: A highly propeller-twisted adenineadenine base pair in 8-tret-butiladenine, Acta Crystallog. C 47 (1991), 1041–1044.

    Google Scholar 

  12. Jursa, J. and Kypr, J.: Geometries and energies of Watson-Crick base pairs in oligonucleotide crystal structures, Gen. Physiol. Biophys. 12 (1993), 401–409.

    Google Scholar 

  13. Dickerson, R.E., et al.: Definitions and nomenclature of nucleic acid structure parameters, EMBO Journal 8 (1989), 1–4.

    Google Scholar 

  14. Komarov, V.M. and Polozov, R.V.: On the propeller structure of isolated Watson-Crick base pairs, Z. Naturforsch. B 45c (1990), 1080.

    Google Scholar 

  15. Komarov, V.M., Polozov, R.V. and Konoplev, G.G.: Non-planar structure of nitrous bases and non-coplanarity of Watson-Crick pairs, J. Theor. Biol. 155 (1992), 281–294.

    Google Scholar 

  16. Komarov, V.M.: Non-coplanar H-binding of the Hugstein base pairs. PCILO conformational evaluations. I. Adenine-adenine and adenine-thymine pairs, Biophysics 39 (1994), 863–868.

    Google Scholar 

  17. Komarov, V.M. and Mevkh, N.G.: A model of plurality of Watson-Crick base pairing forms, Russian J. Phys. Chem. 69 (1995), 1281–1283.

    Google Scholar 

  18. Komarov, V.M.: Quantum-chemical semi-empirical study of polymorphism of Watson-Crick base pairing, Biofizika 43 (1998), 967–974 (in Russian).

    Google Scholar 

  19. Dewar, M.J.S. and Thiel, W.: Ground states of molecules. 38. The MNDO method. Approximations and parameters, J. Am. Chem. Soc. 99 (1977), 4899–4907.

    Google Scholar 

  20. Liotard, D.A., Healy, E.F., Ruiz, J.M. and Dewar, M.J.S.: QCPE, Bloomington, Indiana, 1989, program 506, AMPAC (Version 2.1).

  21. Stewart, J.J.P.: Optimization of parameters for semi-empirical methods. I. Method, J. Comput. Chem. 10 (1989), 209–220.

    Google Scholar 

  22. Stewart, J.J.P.: Optimization of parameters for semi-empirical methods. II. Applications, J. Comput. Chem. 10 (1989), 221–264.

    Google Scholar 

  23. Herzberg, G.: Molecular spectra and molecular structure. Electronic spectra and electronic structure of polyatomic molecules, Toronto-New York-London, 1966.

  24. Brown, R.D., Godfrey, P.D. and Kleybomer, B.K.: The conformation of formamide, J. Molec. Spectrosc. 124 (1987), 34–35.

    Google Scholar 

  25. Brown, R.D., Godfrey, P.D., McNaughton, D. and Pierlot, A.P.: A study of the major gas-phase tautomer of adenine by microwave spectroscopy, Chem. Phys. Lett. 156 (1989), 61–63.

    Google Scholar 

  26. Brown, R.D., Godfrey, P.D., McNaughton, D. and Pierlot, A.P.: Tautomers of cytosine by microwave spectroscopy, J. Am. Chem. Soc. 111 (1989), 2308–2309.

    Google Scholar 

  27. Roussy, G. and Nonat, A.: Determination of the equilibrium molecular structure of inverting molecules by microwave spectroscopy: Application to anilone, J. Mol. Spectrosc. 118 (1986), 180–188.

    Google Scholar 

  28. Ogata, T. and Sugimoto, K.: Microwave spectrum, barrier to internal rotation and dipole moment of methoxuallene, J. Molec. Struct. 190 (1988), 61–67.

    Google Scholar 

  29. Hester, R.E. and Girling, R.B.: Spectroscopy of Biological Molecules. The Royal Society of Chemistry, Cambridge, 1991.

    Google Scholar 

  30. Sheina, G.G., Radchenko, E.D., Plokhotnichenko, A.M. and Blagoj, Yu.P.: IR spectra of associated and hydrated pyrimidine bases of nucleic acids in Ar matrix, Biofizika 33 (1988), 741–746 (in Russian).

    Google Scholar 

  31. Ivanov, A.Yu., Plokhotnichenko, A.M., Radchenko, E.D., Sheina, G.G. and Blagoj, Yu.P.: FTIR spectroscopy of uracil derivatives isolated in Kr, Ar and Ne matrices: Matrix effect and fermi resonance, J. Molec. Struct. 372 (1995), 91–100.

    Google Scholar 

  32. Nowak, M.J.: IR matrix-isolation studies of nucleic acid constituents – The spectrum of monomeric thymine, J. Molec. Struct. 193 (1989), 35–49.

    Google Scholar 

  33. Duguid, J.G., Bloomfield, V.A., Benevides, J.M. and Thomas, G.J.Jr.: DNA melting investigated by differential scanning calorimetry and Raman spectroscopy, Biophys. J. 71 (1996), 3350–3360.

    Google Scholar 

  34. Nowak, M.J., Lapinski, L., Kwiatkowski, J.S. and Leszczynski, J.: Infrared matrix isolation and ab initio quantum mechanical studies of purine and adenine, Spectrochim. Acta 47A (1991), 87–103.

    Google Scholar 

  35. Szczesniak, M., Szczepaniak, K., Kwiatkowski, J.S., KuBulat, K. and Person, W.B.: Matrix isolation infrared studies of nucleic acid constituents. 5. Experimental matrix-isolation and theoretical ab initio SCF molecular orbital studies of infrared spectra of cytosine monomers, J. Am. Chem. Soc. 110 (1988), 8319–8330.

    Google Scholar 

  36. Florian, J.: Scaled quantum mechanical force fields and vibrational spectra of solid-state nucleic acid constituents. 6. Guanine and guanine residue, J. Phys. Chem. 97 (1993), 10649–10658.

    Google Scholar 

  37. MacPhail, R.A., Williams, L.D., Jones, D.A. and Shaw, B.R.: Variable temperature infrared-spectroscopy of cytosine-guanine base-pairs-tautomerism versus polarization, J. Biomol. Struct. Dynamics 9 (1992), 881–898.

    Google Scholar 

  38. Gould, I.R., Vincent, M.A., Hiller, I.H., Lapinski, L. and Nowak, M.J.: A new theoretical prediction of the infrared spectra of cytosine tautomers, Spectrochim. Acta 48A (1992), 811–818.

    Google Scholar 

  39. Kwiatkowski, J.S. and Leszczynski, J.: Molecular structure and vibrational IR spectra of cytosine and its Thio and Seleno analogues by density functional theory and conventional ab initio calculations, J. Phys. Chem. 100 (1996), 941–953.

    Google Scholar 

  40. Tsuboi, M.: IR and Raman spectra, in O.P. T.s'o (ed.), Basic Principles in Nucleic Acid Chemistry, v1. AP, NY, London, 1974.

    Google Scholar 

  41. Hroda, V., Florian, J. and Hobza, P.: Structure, energetics, and harmonic vibrational spectra of the adenine-thymine and adenine*-thymine* base pairs: Gradient nonempirical and semiempirical study, J. Phys. Chem. 97 (1993), 1542–1557.

    Google Scholar 

  42. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Fergusson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A.: A second generation force field for simulation of proteins, nucleic acids, and organic molecules, J. Am. Chem. Soc. 117 (1995), 5179–5197.

    Google Scholar 

  43. Govorun, D.N., Danchuk, V.D., Misuchuk, Ya.R., Kondratyuk, I.V., Radomsky, N.F. and Zeltovsky, N.V.: AM1 calculation of the nucleic acid bases structure and vibrational spectra, J. Mol. Structure 267 (1992), 99–104.

    Google Scholar 

  44. Santamaria, R. and Vazquez, A.: Structural and electronic property changes of the nucleic acid bases upon base pair formation, J. Comput. Chem. 15 (1994), 981–996.

    Google Scholar 

  45. Verkin, B.I., Yanson, I.K., Sukhodub, L.F. and Teplytski, A.B.: Interactions of biomolecules. New experimental approaches and techniques; Naukova Dumka, Kiev, 1985 (in Russian).

    Google Scholar 

  46. Lowen, J.N. and Jenneskens, L.W.: Comparison between some semi-empirical and ab-initio Hartree-Fock models for the description of amides (Formamide revised), J. Phys. Organic Chem. 3 (1990), 711–722.

    Google Scholar 

  47. Leszczynski, J.: Are the amino groups in the nucleic acid bases coplanar with the molecular rings? Ab initio HF/6-31G* and MP2/6-31G* studies, Int. J. Quant. Chem.: Quant. Biol. Symp. 19 (1992), 43–45.

    Google Scholar 

  48. Sponer, J. and Hobza, P.: Nonplanar geometries of DNA bases: ab initio second-order MP study, J. Phys. Chem. 98 (1994), 3161–3164.

    Google Scholar 

  49. Sponer, J. and Hobza, P.: DNA Base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations, Int. J. Quant. Chem. 57 (1996), 959–970.

    Google Scholar 

  50. Sponer, J., Leszczynski, J. and Hobza, P.: Hydrogen bonding and stacking of DNA bases: A review of quantum-chemical ab initio studies, J. Biomol. Struct. Dynamics 14 (1996), 117–135.

    Google Scholar 

  51. Sponer, J., Leszczynski, J. and Hobza, P.: Structure and energy of hydrogen-bonded DNA-base pairs – A nonempirical study with inclusion of electron correlation, J. Phys. Chem. 100 (1996), 1965–1974.

    Google Scholar 

  52. Sponer, J. and Hobza, P.: Nonempirical ab initio calculations on DNA-base pairs, Chem. Phys. 204 (1996), 365–372.

    Google Scholar 

  53. Sponer, J., Florian, J., Hobza, P. and Leszczynski, J.: Nonplanar DNA base pairs, J. Biomol. Struct. Dynamics 13 (1996), 827–833.

    Google Scholar 

  54. Gould, I.R. and Kollman, P.A.: Theoretical investigation of the hydrogen bond strength in guanine-cytosine and adenine-thymine base pairs, J. Am. Chem. Soc. 116 (1994), 2493–2499.

    Google Scholar 

  55. Dive, G., Dehareng, D. and Ghuysen, J.M.: Energy analysis on small to medium sized Hbonded complexes, Theor. Chim. Acta 85 (1993), 409–421.

    Google Scholar 

  56. Leszczynski, J.: Electron correlation effects in the ab initio study on tautomerism of guanine, Chem. Phys. Lett. 174 (1990), 347–349.

    Google Scholar 

  57. Stewart, E.L., Foley, C.K., Allinger, N.L. and Bowen, J.P.: Ab initio calculations with electronic correlation (MP2) on nucleic acid bases and their methyl derivatives, J. Am. Chem. Soc. 116 (1994), 7282–7286.

    Google Scholar 

  58. Florian, J., Leszczynski, J. and Johnson, B.G.: Intermolecular vibrational modes of the G-C, A-T and formamide-formamide H-bonded dimers, J. Mol. Structure 349 (1995), 421–426.

    Google Scholar 

  59. Florian, J. and Leszczynski, J.: What changes occur in vibrational spectra of guanine and cytosine when they form the Watson-Crick base pair? A quantum chemical SCRF/6-31G* study, Int. J. Quant. Chem.: Quant. Biol. Symp. 22 (1995), 207–225.

    Google Scholar 

  60. Spirko, V., Sponer, J. and Hobza, P.: Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs, J. Phys. Chem. 106 (1997), 1472–1479.

    Google Scholar 

  61. Govorun, D.N., Misuchuk, Ya.R., Kondratyuk, I.V. and Zeltovsky, N.V.: Dynamic stereo isomerism of Watson-Crick nucleotide base pairs, Dopovidi NAN Ukrainy 11 (1995), 121–123.

    Google Scholar 

  62. Govorun, D.N., Mishchuk, Ya.R. and Kondratyuk, I.V.: Topological properties of potential energy hypersurfer of canonical nucleotide bases, Biopolimeri i Kletka 12 (1996), 13–17 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, V. On Spectral Identification of DNA-Base Pairs Polymorphism. Journal of Biological Physics 24, 167–184 (1999). https://doi.org/10.1023/A:1005171202207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005171202207

Navigation